Krull $OP$-rings are Pl\"ucker rings
Izvestiya. Mathematics , Tome 7 (1973) no. 2, pp. 287-305.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove the conjecture of Lissner and Geramita that every noetherian regular $OP$-ring is a Plücker ring.
@article{IM2_1973_7_2_a2,
     author = {G. B. Kleiner},
     title = {Krull $OP$-rings are {Pl\"ucker} rings},
     journal = {Izvestiya. Mathematics },
     pages = {287--305},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a2/}
}
TY  - JOUR
AU  - G. B. Kleiner
TI  - Krull $OP$-rings are Pl\"ucker rings
JO  - Izvestiya. Mathematics 
PY  - 1973
SP  - 287
EP  - 305
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a2/
LA  - en
ID  - IM2_1973_7_2_a2
ER  - 
%0 Journal Article
%A G. B. Kleiner
%T Krull $OP$-rings are Pl\"ucker rings
%J Izvestiya. Mathematics 
%D 1973
%P 287-305
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a2/
%G en
%F IM2_1973_7_2_a2
G. B. Kleiner. Krull $OP$-rings are Pl\"ucker rings. Izvestiya. Mathematics , Tome 7 (1973) no. 2, pp. 287-305. http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a2/

[1] Towber J., “Complete redicibility in exterior algebras over free modules”, J. Algebra, 10:3 (1968), 299–309 | DOI | MR | Zbl

[2] Lissner D., Geramita A., “Towber rings”, J. Algebra, 15:1 (1970), 13–41 | DOI | MR

[3] Lissner D., Geramita A., “Remarks on $OP$ and Towber rings”, Canad. J. Math., 22:6 (1970), 1109–1117 | MR | Zbl

[4] Kleiner G. B., “O plyukkerovykh svoistvakh kolets”, Matem. sb., 84:4 (1971), 526–536 | MR | Zbl

[5] Kleiner G. B., “O razlozhimosti elementov vneshnei algebry svobodnogo modulya”, Uspekhi matem. nauk, XXVI:4 (1971), 235–236 | MR

[6] Bourbaki N., Algebre commutative, Hermann, Paris, 1965, Chap. 7 | MR

[7] Simis A., “When are projective modules free?”, Queen's Papers in Pure and Appl. Math., 21, 1969, 1–254 | MR