Asymptotics of the eigenvalues of the Laplacian and quasimodes. A~series of quasimodes corresponding to a~system of caustics close to the boundary of the domain
Izvestiya. Mathematics , Tome 7 (1973) no. 2, pp. 439-466.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a bounded convex domain in the plane, asymptotic formulas with error tending to zero are constructed for a certain series of eigenvalues of the Laplacian with zero boundary conditions. The boundary of the domain is assumed to be sufficiently smooth. It is proved that $$ \varliminf_{\lambda\to+\infty}N^*(\lambda)/N(\lambda)>0, $$ where $N(\lambda)$ is the number of eigenvalues (with multiplicities taken into account) less than $\lambda$ and $N^*(\lambda)$ is the number of those eigenvalues for which an asymptotic expansion has been found.
@article{IM2_1973_7_2_a11,
     author = {V. F. Lazutkin},
     title = {Asymptotics of the eigenvalues of the {Laplacian} and quasimodes. {A~series} of quasimodes corresponding to a~system of caustics close to the boundary of the domain},
     journal = {Izvestiya. Mathematics },
     pages = {439--466},
     publisher = {mathdoc},
     volume = {7},
     number = {2},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a11/}
}
TY  - JOUR
AU  - V. F. Lazutkin
TI  - Asymptotics of the eigenvalues of the Laplacian and quasimodes. A~series of quasimodes corresponding to a~system of caustics close to the boundary of the domain
JO  - Izvestiya. Mathematics 
PY  - 1973
SP  - 439
EP  - 466
VL  - 7
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a11/
LA  - en
ID  - IM2_1973_7_2_a11
ER  - 
%0 Journal Article
%A V. F. Lazutkin
%T Asymptotics of the eigenvalues of the Laplacian and quasimodes. A~series of quasimodes corresponding to a~system of caustics close to the boundary of the domain
%J Izvestiya. Mathematics 
%D 1973
%P 439-466
%V 7
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a11/
%G en
%F IM2_1973_7_2_a11
V. F. Lazutkin. Asymptotics of the eigenvalues of the Laplacian and quasimodes. A~series of quasimodes corresponding to a~system of caustics close to the boundary of the domain. Izvestiya. Mathematics , Tome 7 (1973) no. 2, pp. 439-466. http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a11/

[1] Keller J., Rubinov S., “Asymptotic solution of eigenvalue problems”, Ann. Phys., 9:1 (1960), 24–75 | DOI | Zbl

[2] Buldyrev V. S., “Asimptotika sobstvennykh funktsii uravneniya Gelmgoltsa dlya ploskikh oblastei”, Vestn. Leningr. un-ta, 1965, no. 22, 38–51 | MR | Zbl

[3] Maslov V. P., “Metod VKB v mnogomernom sluchae”, Dopolnenie III k kn.: Dzh. Khoding, Vvedenie v metod fazovykh integralov (metod VKB), Mir, M., 1965

[4] Lazutkin V. F., “Korotkovolnovaya asimptotika sobstvennykh chastot membrany. Seriya sobstvennykh chastot, postroennaya na gladkoi zamknutoi invariantnoi krivoi billiardnoi zadachi”, Tr. V Vsesoyuznogo simpoziuma po difraktsii i rasprostraneniyu voln, L., 1971, 134–143

[5] Lazutkin V. F., “Sobstvennye funktsii s zadannoi kaustikoi”, Zh. vychisl. matem. i matem. fiz., 10:2 (1970), 362–373 | MR | Zbl

[6] Lazutkin V. F., “Asimptotika sobstvennykh funktsii operatora Laplasa, sosredotochennykh vblizi granitsy oblasti”, Zh. vychisl. matem. i matem. fiz., 7:6 (1967), 1237–1249 | MR

[7] Lazutkin V. F., “Asimptotika serii sobstvennykh funktsii operatora Laplasa, otvechayuschei zamknutoi invariantnoi krivoi “billiardnoi zadachi””, Problemy matem. fiz., no. 5, Leningr. un-t, 1971, 72–91 | MR

[8] Lazutkin V. F., “Suschestvovanie kaustik dlya billiardnoi zadachi v vypukloi oblasti”, Izv. AN SSSR. Ser. matem., 37 (1971), 186–216 | MR

[9] Chirikov B. V., Issledovaniya po teorii nelineinogo rezonansa i stokhastichnosti, preprint No 267, Institut yadernoi fiziki SO AN SSSR, Novosibirsk, 1969

[10] Lazutkin V. F., “Ob asimptotike sobstvennykh funktsii operatora Laplasa”, Dokl. AN SSSR, 200:6 (1971), 1277–1279 | MR | Zbl

[11] Fok V. A., Tablitsy funktsii Eiri, Gostekhizdat, M., 1946

[12] Kravtsov Yu. A., “Ob odnoi modifikatsii metoda geometricheskoi optiki”, Izv. vyssh. uchebn. zaved., Radiofizika, 7:4 (1964), 664–673

[13] Ludvig D., “Uniform asymptotic expansion at a caustic”, Comm. Pure Appl. Math., 19:2 (1966), 215–250 | DOI | MR

[14] Arnold V. I., “Mody i kvazimody”, Funktsionalnyi analiz i ego prilozheniya, 6:2 (1972), 12–20 | MR