On the dimension of noncommutative affine algebras
Izvestiya. Mathematics, Tome 7 (1973) no. 2, pp. 281-285
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $R$ be a finitely generated prime $PI$-algebra over a field $F$. $Z$ is the center of its ring of fractions. It is proved that $Z$ is the field of fractions of the center of $R$ and that the transcendence degree of $Z$ over $F$ is equal to the maximal length of a chain of prime ideals in $R$.
@article{IM2_1973_7_2_a1,
author = {V. T. Markov},
title = {On the dimension of noncommutative affine algebras},
journal = {Izvestiya. Mathematics},
pages = {281--285},
year = {1973},
volume = {7},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a1/}
}
V. T. Markov. On the dimension of noncommutative affine algebras. Izvestiya. Mathematics, Tome 7 (1973) no. 2, pp. 281-285. http://geodesic.mathdoc.fr/item/IM2_1973_7_2_a1/
[1] Razmyslov Yu. P., “O probleme Kaplanskogo”, Izv. AN SSSR. Ser. matem., 37:3 (1973), 483–501 | MR | Zbl
[2] Posner E. C., “Prime rings satisfying a polinomial identity”, Proc. Amer. Math. Soc., 11:2 (1960), 180–183 | DOI | MR | Zbl
[3] Burbaki N., Kommutativnaya algebra, Mir, M., 1971 | MR
[4] Small L. W., “Localization in $PI$-brings”, J. Algebra, 19:2 (1971), 181–183 | MR
[5] Procesi C., “Non-commutative affine rings”, Atti Accad. Naz. Lincei, Mem. Cl. Sci. fis., Mat. e Natur., Ser. I, 8:6 (1967), 239–255 | MR | Zbl
[6] Amitsur S. A., Procesi C., “Jacobson-rings and Hilbert algebras with polinomial identities”, Ann. Mat. Pura ed Applic, 71 (1966), 67–72 | MR