The solid inverse problem of polynomial approximation of functions on a~regular compactum
Izvestiya. Mathematics , Tome 7 (1973) no. 1, pp. 145-162.

Voir la notice de l'article provenant de la source Math-Net.Ru

We solve the solid inverse problem of polynomial approximation of functions on compact of the complex plane which have a connected complement and which are regular in the sense of the solvability of the Dirichlet problem for continuous boundary values. Here the term “solid” is used to denote that the derivative and the modulus of continuity of the function are defined with regard to not only the boundary but also the interior points of the compactum. As a very special case the results of this paper contain the solution for the solid inverse problem of polynomial approximation for arbitrary bounded continua with connected complement.
@article{IM2_1973_7_1_a6,
     author = {P. M. Tamrazov},
     title = {The solid inverse problem of polynomial approximation of functions on a~regular compactum},
     journal = {Izvestiya. Mathematics },
     pages = {145--162},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_1_a6/}
}
TY  - JOUR
AU  - P. M. Tamrazov
TI  - The solid inverse problem of polynomial approximation of functions on a~regular compactum
JO  - Izvestiya. Mathematics 
PY  - 1973
SP  - 145
EP  - 162
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1973_7_1_a6/
LA  - en
ID  - IM2_1973_7_1_a6
ER  - 
%0 Journal Article
%A P. M. Tamrazov
%T The solid inverse problem of polynomial approximation of functions on a~regular compactum
%J Izvestiya. Mathematics 
%D 1973
%P 145-162
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1973_7_1_a6/
%G en
%F IM2_1973_7_1_a6
P. M. Tamrazov. The solid inverse problem of polynomial approximation of functions on a~regular compactum. Izvestiya. Mathematics , Tome 7 (1973) no. 1, pp. 145-162. http://geodesic.mathdoc.fr/item/IM2_1973_7_1_a6/

[1] Dzyadyk V. K., “Obratnye teoremy teorii priblizheniya funktsii v kompleksnykh oblastyakh”, Ukr. matem. zh., 15 (1963), 365–375

[2] Lebedev N. A., “Ob obratnykh teoremakh ravnomernogo priblizheniya”, Dokl. AN SSSR, 171 (1966), 788–790 | MR | Zbl

[3] Lebedev N. A., Tamrazov P. M., “Ob obratnykh teoremakh priblizheniya na zamknutykh mnozhestvakh kompleksnoi ploskosti”, Dokl. AN SSSR, 179 (1968), 1046–1049 | MR | Zbl

[4] Lebedev N. A., Tamrazov P. M., “Obratnye teoremy priblizheniya na regulyarnykh kompaktakh kompleksnoi ploskosti”, Izv. AN SSSR. Ser. matem., 34 (1970), 1340–1390 | MR | Zbl

[5] Dzyadyk V. K., “O probleme S. M. Nikolskogo v kompleksnoi oblasti”, Izv. AN SSSR, Ser. matem., 23 (1959), 697–736 | MR | Zbl

[6] Sewell W. E., “Degree of approximation by polynomials in the complex domain”, Ann. Math. Studies, 1942, no. 9 | MR | Zbl

[7] Mergelyan S. N., “Ravnomernoe priblizhenie funktsii kompleksnogo peremennogo”, Uspekhi matem. nauk, 7:2(48) (1952), 31–122 | MR | Zbl

[8] Tamrazov P. M., “Granichnye i telesnye obratnye zadachi polinomialnoi approksimatsii funktsii dlya kompaktov na ploskosti”, Congres International des Mathematiciens (Nice, 1970, “265 communications individuelles”), 176–177

[9] Tamrazov P. M., “Telesnye obratnye teoremy polinomialnoi approksimatsii dlya regulyarnykh kompaktov kompleksnoi ploskosti”, Dokl. AN SSSR, 198 (1971), 540–542 | MR | Zbl

[10] Brelo M., Osnovy klassicheskoi teorii potentsiala, Mir, M., 1964 | MR | Zbl

[11] Tamrazov P. M., “Ekstremalnye konformnye otobrazheniya i polyusy kvadratichnykh potentsialov”, Izv. AN SSSR. Ser. matem., 32 (1968), 1033–1043 | MR | Zbl