On the mean convergence of Fourier series in Legendre polynomials
Izvestiya. Mathematics , Tome 7 (1973) no. 1, pp. 131-144

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study the convergence of Fourier series in Legendre polynomials in the space $L_p$, if $1\leqslant p\leqslant4/3$ or $4\leqslant p\infty$ (i.e. in the case when the Lebesgue constants are unbounded). The fundamental result consists in the fact that with the improvement of the differential-difference properties of the function, the convergence is less affected by the growth of the Lebesgue constant ($1\leqslant p\leqslant4/3$). For functions with sufficiently good differential-difference properties the partial sums of the Fourier–Legendre series give an approximation in the $L_p$ ($1$) metric of an order as good as the best.
@article{IM2_1973_7_1_a5,
     author = {V. P. Motornyi},
     title = {On the mean convergence of {Fourier} series in {Legendre} polynomials},
     journal = {Izvestiya. Mathematics },
     pages = {131--144},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_1_a5/}
}
TY  - JOUR
AU  - V. P. Motornyi
TI  - On the mean convergence of Fourier series in Legendre polynomials
JO  - Izvestiya. Mathematics 
PY  - 1973
SP  - 131
EP  - 144
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1973_7_1_a5/
LA  - en
ID  - IM2_1973_7_1_a5
ER  - 
%0 Journal Article
%A V. P. Motornyi
%T On the mean convergence of Fourier series in Legendre polynomials
%J Izvestiya. Mathematics 
%D 1973
%P 131-144
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1973_7_1_a5/
%G en
%F IM2_1973_7_1_a5
V. P. Motornyi. On the mean convergence of Fourier series in Legendre polynomials. Izvestiya. Mathematics , Tome 7 (1973) no. 1, pp. 131-144. http://geodesic.mathdoc.fr/item/IM2_1973_7_1_a5/