On the orders of free groups of locally finite varieties
Izvestiya. Mathematics , Tome 7 (1973) no. 1, pp. 85-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

The results of [4] are used here to show that there exists a continuum of locally finite varieties of groups with pairwise distinct “ordinal” functions, thus disproving a conjecture of G. Higman. On the other hand, an example is given of distinct varieties having the same “ordinal” function.
@article{IM2_1973_7_1_a2,
     author = {A. Yu. Ol'shanskii},
     title = {On the orders of free groups of locally finite varieties},
     journal = {Izvestiya. Mathematics },
     pages = {85--90},
     publisher = {mathdoc},
     volume = {7},
     number = {1},
     year = {1973},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_1_a2/}
}
TY  - JOUR
AU  - A. Yu. Ol'shanskii
TI  - On the orders of free groups of locally finite varieties
JO  - Izvestiya. Mathematics 
PY  - 1973
SP  - 85
EP  - 90
VL  - 7
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1973_7_1_a2/
LA  - en
ID  - IM2_1973_7_1_a2
ER  - 
%0 Journal Article
%A A. Yu. Ol'shanskii
%T On the orders of free groups of locally finite varieties
%J Izvestiya. Mathematics 
%D 1973
%P 85-90
%V 7
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1973_7_1_a2/
%G en
%F IM2_1973_7_1_a2
A. Yu. Ol'shanskii. On the orders of free groups of locally finite varieties. Izvestiya. Mathematics , Tome 7 (1973) no. 1, pp. 85-90. http://geodesic.mathdoc.fr/item/IM2_1973_7_1_a2/

[1] Neiman X., Mnogoobraziya grupp, Mir, M., 1969 | MR

[2] Higman G., “The orders of relatively free groups”, Proc. Internat. Sonf. Theory of Groups (Canberra, 1965), Gordon and Breach, 1967, 153–165 | MR | Zbl

[3] Kovacs L. G., “On the number of varieties of groups”, J. Austral. Math. Soc., 8:3 (1968), 444–446 | DOI | MR | Zbl

[4] Olshanskii A. Yu., “O probleme konechnogo bazisa tozhdestv v gruppakh”, Izv. AN SSSR. Ser. matem., 34 (1970), 376–384

[5] Vaughan-Lee M. R., “Uncountably many varieties of groups”, Bull. London Math. Soc., 2:6 (1970), 280–286 | DOI | MR | Zbl