On the orders of free groups of locally finite varieties
Izvestiya. Mathematics, Tome 7 (1973) no. 1, pp. 85-90
Cet article a éte moissonné depuis la source Math-Net.Ru
The results of [4] are used here to show that there exists a continuum of locally finite varieties of groups with pairwise distinct “ordinal” functions, thus disproving a conjecture of G. Higman. On the other hand, an example is given of distinct varieties having the same “ordinal” function.
@article{IM2_1973_7_1_a2,
author = {A. Yu. Ol'shanskii},
title = {On the orders of free groups of locally finite varieties},
journal = {Izvestiya. Mathematics},
pages = {85--90},
year = {1973},
volume = {7},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1973_7_1_a2/}
}
A. Yu. Ol'shanskii. On the orders of free groups of locally finite varieties. Izvestiya. Mathematics, Tome 7 (1973) no. 1, pp. 85-90. http://geodesic.mathdoc.fr/item/IM2_1973_7_1_a2/
[1] Neiman X., Mnogoobraziya grupp, Mir, M., 1969 | MR
[2] Higman G., “The orders of relatively free groups”, Proc. Internat. Sonf. Theory of Groups (Canberra, 1965), Gordon and Breach, 1967, 153–165 | MR | Zbl
[3] Kovacs L. G., “On the number of varieties of groups”, J. Austral. Math. Soc., 8:3 (1968), 444–446 | DOI | MR | Zbl
[4] Olshanskii A. Yu., “O probleme konechnogo bazisa tozhdestv v gruppakh”, Izv. AN SSSR. Ser. matem., 34 (1970), 376–384
[5] Vaughan-Lee M. R., “Uncountably many varieties of groups”, Bull. London Math. Soc., 2:6 (1970), 280–286 | DOI | MR | Zbl