On a~global theory of moduli of algebraic surfaces of general type
Izvestiya. Mathematics , Tome 6 (1972) no. 6, pp. 1200-1216.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the construction of a moduli topology (in the sense of Mumford) and a complex moduli space for 2-minimal algebraic surfaces of general type over the field of complex numbers.
@article{IM2_1972_6_6_a1,
     author = {S. G. Tankeev},
     title = {On a~global theory of moduli of algebraic surfaces of general type},
     journal = {Izvestiya. Mathematics },
     pages = {1200--1216},
     publisher = {mathdoc},
     volume = {6},
     number = {6},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_6_a1/}
}
TY  - JOUR
AU  - S. G. Tankeev
TI  - On a~global theory of moduli of algebraic surfaces of general type
JO  - Izvestiya. Mathematics 
PY  - 1972
SP  - 1200
EP  - 1216
VL  - 6
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1972_6_6_a1/
LA  - en
ID  - IM2_1972_6_6_a1
ER  - 
%0 Journal Article
%A S. G. Tankeev
%T On a~global theory of moduli of algebraic surfaces of general type
%J Izvestiya. Mathematics 
%D 1972
%P 1200-1216
%V 6
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1972_6_6_a1/
%G en
%F IM2_1972_6_6_a1
S. G. Tankeev. On a~global theory of moduli of algebraic surfaces of general type. Izvestiya. Mathematics , Tome 6 (1972) no. 6, pp. 1200-1216. http://geodesic.mathdoc.fr/item/IM2_1972_6_6_a1/

[1] Artin M., “Some numerical criteria for contractability of curves on algebraic surfaces”, Amer. J. Math., 84 (1962), 485–496 ; Matematika, 9:3 (1965) | DOI | MR | Zbl | MR

[2] Artin M., “Algebraic approximation of structures oyer complete local rings”, Publ. Math. IHES, 36 (1969), 23–58 ; Matematika, 14:3 (1970) | MR | Zbl

[3] Bombieri E., The pluricanonical map of a complex surface, preprint | MR

[4] Deligne P., Mumford D., “The irreducibility of the space of surves of given genus”, Publ. Math. IHES, 36 (1969), 75–109 | MR | Zbl

[5] Grauert H., Remmert R., “Faisceaux analytiques cohérents sur le produit d'un espace analytique et d'un espace projectif”, Compt. rend. Acad. sci., 245:8 (1957), 819–822 | MR | Zbl

[6] Grothendieck A., “Éléments de géométrie algébrique. IV”, Inst. Hautes Études Sci. Publ. Math., 1967, no. 32 | MR

[7] Grothendieck A., Fondements de la géométrie algébrique, Paris, 1962

[8] Hartshorne R., Residues and duality, Springer-Verlag, Berlin, 1966 | MR

[9] Kodaira K., “Pluricanonical systems on algebraic surfaces of general type”, J. Math. Soc. Japan, 20 (1968), 170–192 | MR | Zbl

[10] Matsusaka T., Mumford D., “Two fundamental theorems on deformatioas of polarized varieties”, Amer. J. Math., 86:3 (1964), 668–684 | DOI | MR | Zbl

[11] Mumford D., “The canonical ring of an algebraic surface”, Ann. Math., 76:3 (1962), 612–615 | MR

[12] Mumford D., “Picard groups of moduli problems”, Arithmetical Algebraic Geometry, New York, 1965, 33–81 ; Matematika, 13:2 (1969) | MR | Zbl | MR

[13] Mumford D., Geometric invariant theory, Springer-Verlag, Berlin, 1965 | MR | Zbl

[14] Mamford D., Lektsii o krivykh na algebraicheskoi poverkhnosti, Mir, M., 1968

[15] Mamford D., Abelevy mnogoobraziya, Mir, M., 1971

[16] Moishezon B. G., “Kriterii proektivnosti polnykh algebraicheskikh abstraktnykh mnogoobrazii”, Izv. AN SSSR. Ser. matem., 28:1 (1964), 179–224 | Zbl

[17] Néron A., Samuel P., “La variété de Picard d'une variété normale”, Ann. Inst. Fourier, 4 (1954), 1–30 | MR

[18] Palais R. S., “On the existence of slices for actions of non-compact Lie groups”, Ann. Math., 73:2 (1961), 295–323 | DOI | MR | Zbl

[19] Shimura G., “Reduction of algebraic varieties with respect to a discrete valuation of the basic field”, Amer. J. Math., 77:1 (1955), 134–176 | DOI | MR | Zbl

[20] Tyurina G. N., “Lokalno poluuniversalnye ploskie deformatsii izolirovannykh osobennostei kompleksnykh prostranstv”, Izv. AN SSSR. Ser. matem., 33:5 (1969), 1026–1058 | Zbl

[21] Tyurina G. N., “Razreshenie osobennostei ploskikh deformatsii dvoinykh ratsionalnykh tochek”, Funkts. analiz i ego prilozh., 4:1 (1970), 77–83 | MR | Zbl