On the asymptotic behavior of solutions of differential equations in Hilbert space
Izvestiya. Mathematics , Tome 6 (1972) no. 5, pp. 1067-1116.

Voir la notice de l'article provenant de la source Math-Net.Ru

Differential equations of arbitrary order with unbounded variable operator valued coefficients in a Hilbert space are considered. Asymptotic formulas for solutions are derived under the assumption that the coefficients are “weakly stabilized” at infinity.
@article{IM2_1972_6_5_a6,
     author = {V. G. Maz'ya and B. A. Plamenevskii},
     title = {On the asymptotic behavior of solutions of differential equations in {Hilbert} space},
     journal = {Izvestiya. Mathematics },
     pages = {1067--1116},
     publisher = {mathdoc},
     volume = {6},
     number = {5},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_5_a6/}
}
TY  - JOUR
AU  - V. G. Maz'ya
AU  - B. A. Plamenevskii
TI  - On the asymptotic behavior of solutions of differential equations in Hilbert space
JO  - Izvestiya. Mathematics 
PY  - 1972
SP  - 1067
EP  - 1116
VL  - 6
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1972_6_5_a6/
LA  - en
ID  - IM2_1972_6_5_a6
ER  - 
%0 Journal Article
%A V. G. Maz'ya
%A B. A. Plamenevskii
%T On the asymptotic behavior of solutions of differential equations in Hilbert space
%J Izvestiya. Mathematics 
%D 1972
%P 1067-1116
%V 6
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1972_6_5_a6/
%G en
%F IM2_1972_6_5_a6
V. G. Maz'ya; B. A. Plamenevskii. On the asymptotic behavior of solutions of differential equations in Hilbert space. Izvestiya. Mathematics , Tome 6 (1972) no. 5, pp. 1067-1116. http://geodesic.mathdoc.fr/item/IM2_1972_6_5_a6/

[1] Khille E., Fillips R. S., Funktsionalnyi analiz i polugruppy, IL, M., 1962

[2] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR

[3] Lions J. L., Equations differentielles operationelles et problemes aux timites, Berlin, 1961 | MR

[4] Daletskii Yu. L., Krein M. G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR

[5] Agmon S., Nirenberg L., “Properties of solutions of ordinary differential equations in Banach space”, Comm. pure and appl. Math., 16:2 (1963), 121–239 | DOI | MR | Zbl

[6] Pazy A., “Asymptotic expansions of solutions of ordinary differential equations in Hilbert space”, Arch. Rat. Mect. and Analysis, 24:3 (1967), 193–218 | DOI | MR | Zbl

[7] Kondratev V. A., “Kraevye zadachi dlya parabolicheskikh uravnenii v zamknutykh oblastyakh”, Tr. Mosk. matem. ob-va, 15, 1966, 400–451

[8] Kondratev V. A., “Kraevye zadachi dlya ellipticheskikh uravnenii v oblastyakh s konicheskimi ili uglovymi tochkami”, Tr. Mosk. matem. ob-va, 16, 1967, 209–292

[9] Evgrafov M. A., “Struktura reshenii eksponentsialnogo rosta dlya nekotorykh operatornykh uravnenii”, Tr. matem. in-ta im. V. A. Steklova AN SSSR, 60, 1961, 145–180 | MR | Zbl

[10] Gokhberg I. Ts., Krein M. G., “Osnovnye polozheniya o defektnykh chislakh, kornevykh chislakh i indeksakh lineinykh operatorov”, Uspekhi matem. nauk, 12:2(74) (1957), 43–118 | MR

[11] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi dlya differentsialnykh uravnenii s malym parametrom”, Uspekhi matem. nauk, 12:5 (1957), 3–122 | MR | Zbl

[12] Vishik M. I., Lyusternik L. A., “Reshenie nekotorykh zadach o vozmuschenii v sluchae matrits i samosopryazhennykh i nesamosopryazhenyykh differentsialnykh uravnenii s bolshimi ili bystro menyayuschimisya koeffitsientami i granichnymi usloviyami”, Uspekhi matem. nauk, 15:4 (1960), 27–94 | MR | Zbl

[13] Mazya V. G., Plamenevskii B. A., “Ob asimptotike reshenii differentsialnykh uravnenii s operatornymi koeffitsientami”, Dokl. AN SSSR, 196:3 (1971), 512–515

[14] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[15] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971 | Zbl