Minimal compacta in riemannian manifolds and Reifenberg's conjecture
Izvestiya. Mathematics , Tome 6 (1972) no. 5, pp. 1037-1066.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper one obtains a geometrical lower bound on the measure of an arbitrary minimal compactum which realizes an arbitrary nontrivial cocycle in a compact riemannian manifold. In particular, one gets an answer to Reifenberg's question about the number of “leaves” at singular points of special types, and concrete examples are also given of global minimal compacta in symmetric spaces.
@article{IM2_1972_6_5_a5,
     author = {A. T. Fomenko},
     title = {Minimal compacta in riemannian manifolds and {Reifenberg's} conjecture},
     journal = {Izvestiya. Mathematics },
     pages = {1037--1066},
     publisher = {mathdoc},
     volume = {6},
     number = {5},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_5_a5/}
}
TY  - JOUR
AU  - A. T. Fomenko
TI  - Minimal compacta in riemannian manifolds and Reifenberg's conjecture
JO  - Izvestiya. Mathematics 
PY  - 1972
SP  - 1037
EP  - 1066
VL  - 6
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1972_6_5_a5/
LA  - en
ID  - IM2_1972_6_5_a5
ER  - 
%0 Journal Article
%A A. T. Fomenko
%T Minimal compacta in riemannian manifolds and Reifenberg's conjecture
%J Izvestiya. Mathematics 
%D 1972
%P 1037-1066
%V 6
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1972_6_5_a5/
%G en
%F IM2_1972_6_5_a5
A. T. Fomenko. Minimal compacta in riemannian manifolds and Reifenberg's conjecture. Izvestiya. Mathematics , Tome 6 (1972) no. 5, pp. 1037-1066. http://geodesic.mathdoc.fr/item/IM2_1972_6_5_a5/

[1] Federer H., Geometric measure theory, bd. 153, Springer, Berlin, 1969 | MR

[2] Almgren F. J., “Existence and regularity almost everywhere of solutions to elliptic variational problem among surfaces of varying topological type and singularity structure”, Ann. Math. (2), 87:2 (1968), 321–391 | DOI | MR | Zbl

[3] Reifenberg E. R., “Solution of the Plateau problem for $m$-dimensional surfaces of varying topological type”, Acta Math., 104:1 (1960), 1–92 | DOI | MR | Zbl

[4] Morrey Ch. B., Multiple integrals in the calculus of variations, bd. 130, Springer, Berlin, 1966 | MR | Zbl

[5] Fomenko A. T., “Suschestvovanie i pochti vsyudu regulyarnost minimalnykh kompaktov s zadannymi gomologicheskimi svoistvami”, Dokl. AN SSSR, 187:4 (1969), 747–749 | MR | Zbl

[6] Fomenko A. T., “Mnogomernaya zadacha Plato v ekstraordinarnykh teoriyakh gomologii i kogomologii”, Dokl. AN SSSR, 200:4 (1971), 797–800 | MR | Zbl

[7] Federer H., “Some theorems on integral currents”, Trans. Amer. Math. Soc., 117:5 (1965), 43–67 | DOI | MR | Zbl

[8] Bombieri E., De Georgi E., Giusti E., “Minimal cones and the Bernstein problem”, Invent. Math., 7:3 (1969), 243–268 | DOI | MR | Zbl

[9] Simons J., “Minimal varieties in riemannian manifolds”, Ann. Math., 88:1 (1968), 62–106 | DOI | MR

[10] Bishop R., Krittenden R., Geometriya mnogoobrazii, Mir, M., 1967 | MR | Zbl

[11] Crittenden R., “Minimum and cojugate points in symmetric spaces”, Canad. J. Math., 14:2 (1962), 320–328 | MR | Zbl

[12] Bopel A., “O kogomologiyakh glavnykh rassloennykh prostranstv”, Rassloennye prostranstva i ikh prilozheniya, IL, M., 1958