Minimal compacta in riemannian manifolds and Reifenberg's conjecture
Izvestiya. Mathematics , Tome 6 (1972) no. 5, pp. 1037-1066
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper one obtains a geometrical lower bound on the measure of an arbitrary minimal compactum which realizes an arbitrary nontrivial cocycle in a compact riemannian manifold. In particular, one gets an answer to Reifenberg's question about the number of “leaves” at singular points of special types, and concrete examples are also given of global minimal compacta in symmetric spaces.
@article{IM2_1972_6_5_a5,
author = {A. T. Fomenko},
title = {Minimal compacta in riemannian manifolds and {Reifenberg's} conjecture},
journal = {Izvestiya. Mathematics },
pages = {1037--1066},
publisher = {mathdoc},
volume = {6},
number = {5},
year = {1972},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_5_a5/}
}
A. T. Fomenko. Minimal compacta in riemannian manifolds and Reifenberg's conjecture. Izvestiya. Mathematics , Tome 6 (1972) no. 5, pp. 1037-1066. http://geodesic.mathdoc.fr/item/IM2_1972_6_5_a5/