Theorems on the topological equisingularity of families of algebraic varieties and families of polynomial mappings
Izvestiya. Mathematics , Tome 6 (1972) no. 5, pp. 949-1008.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider families of complex or real algebraic varieties. We prove that for almost all values of the parameters both the topology of the variety and its position in space will be the same. The set of singular values of the parameters is calculated constructively. In this paper we also isolate a class of families of polynomial mappings. For such families we prove the topological equivalence of almost all the mappings included in them. These results are applied to a proof of Zariski's theorem on the fundamental group of the complement to an algebraic hypersurface.
@article{IM2_1972_6_5_a3,
     author = {A. N. Varchenko},
     title = {Theorems on the topological equisingularity of families of algebraic varieties and families of polynomial mappings},
     journal = {Izvestiya. Mathematics },
     pages = {949--1008},
     publisher = {mathdoc},
     volume = {6},
     number = {5},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_5_a3/}
}
TY  - JOUR
AU  - A. N. Varchenko
TI  - Theorems on the topological equisingularity of families of algebraic varieties and families of polynomial mappings
JO  - Izvestiya. Mathematics 
PY  - 1972
SP  - 949
EP  - 1008
VL  - 6
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1972_6_5_a3/
LA  - en
ID  - IM2_1972_6_5_a3
ER  - 
%0 Journal Article
%A A. N. Varchenko
%T Theorems on the topological equisingularity of families of algebraic varieties and families of polynomial mappings
%J Izvestiya. Mathematics 
%D 1972
%P 949-1008
%V 6
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1972_6_5_a3/
%G en
%F IM2_1972_6_5_a3
A. N. Varchenko. Theorems on the topological equisingularity of families of algebraic varieties and families of polynomial mappings. Izvestiya. Mathematics , Tome 6 (1972) no. 5, pp. 949-1008. http://geodesic.mathdoc.fr/item/IM2_1972_6_5_a3/

[1] Zariski O., “On the Poincare Group of a Projective Hypersurface”, Ann. Math., 38:1 (1937), 131–141 | DOI | MR | Zbl

[2] Hamm H., Lê Dũng Tráng, “Un théorème du type de Lefschetz”, C. R. Acad. Sci. Paris, 272 (1971), 946–949 | MR | Zbl

[3] Speder I. P., Equisingularite et conditions de Whitney, Thése de Doctorat, Paris, 1971

[4] Lojasiewicz S., “Triangulation of semianalytic sets”, Annali della Scuola Normale Superiore di Pisa (III), XVIII:IV (1964), 449–474 | MR

[5] Varchenko A. N., “Teorema ob ekvisingulyarnosti semeistv algebraicheskikh mnogoobrazii”, Uspekhi Matem. nauk, XXVI:1(157) (1971), 217–218

[6] Zariski O., “Studies in equisingularity, I”, Amer. J. Math., 87:2 (1965), 505–536 ; “II”, Amer. J. Math., 87:4 (1965), 972–1006 ; “III”, Amer. J. Math., 90:3 (1968), 961–1023 | DOI | DOI | MR | Zbl | DOI | MR