On the set of singularities of the Poincar\'e divisor of the Picard variety of the Fano surface of a~nonsingular cubic
Izvestiya. Mathematics , Tome 6 (1972) no. 5, pp. 938-948.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper it is proved that the singular points of the Poincaré divisor of the Picard variety of the Fano surface of a nonsingular cubic are contained in the set of points of second and third orders of the abelian variety or in elliptic curves corresponding to the inflection points of the cubic.
@article{IM2_1972_6_5_a2,
     author = {A. N. Tyurin},
     title = {On the set of singularities of the {Poincar\'e} divisor of the {Picard} variety of the {Fano} surface of a~nonsingular cubic},
     journal = {Izvestiya. Mathematics },
     pages = {938--948},
     publisher = {mathdoc},
     volume = {6},
     number = {5},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_5_a2/}
}
TY  - JOUR
AU  - A. N. Tyurin
TI  - On the set of singularities of the Poincar\'e divisor of the Picard variety of the Fano surface of a~nonsingular cubic
JO  - Izvestiya. Mathematics 
PY  - 1972
SP  - 938
EP  - 948
VL  - 6
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1972_6_5_a2/
LA  - en
ID  - IM2_1972_6_5_a2
ER  - 
%0 Journal Article
%A A. N. Tyurin
%T On the set of singularities of the Poincar\'e divisor of the Picard variety of the Fano surface of a~nonsingular cubic
%J Izvestiya. Mathematics 
%D 1972
%P 938-948
%V 6
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1972_6_5_a2/
%G en
%F IM2_1972_6_5_a2
A. N. Tyurin. On the set of singularities of the Poincar\'e divisor of the Picard variety of the Fano surface of a~nonsingular cubic. Izvestiya. Mathematics , Tome 6 (1972) no. 5, pp. 938-948. http://geodesic.mathdoc.fr/item/IM2_1972_6_5_a2/

[1] Bombieri E., Swinnerton-Dyer H. P. F., “On the local Zeta-function of a cubic threefold”, Annali della Scuola Normale superiore di Pisa (III), XXI:1 (1967), 1–29 | MR

[2] Tyurin A. N., “Geometriya poverkhnosti Fano neosoboi kubiki $F\subset P^4$ i teoremy Torelli dlya poverkhnostei Fano i kubik”, Izv. AN SSSR. Ser. matem., 35 (1971), 498–529 | Zbl