On the set of singularities of the Poincaré divisor of the Picard variety of the Fano surface of a nonsingular cubic
Izvestiya. Mathematics, Tome 6 (1972) no. 5, pp. 938-948
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper it is proved that the singular points of the Poincaré divisor of the Picard variety of the Fano surface of a nonsingular cubic are contained in the set of points of second and third orders of the abelian variety or in elliptic curves corresponding to the inflection points of the cubic.
@article{IM2_1972_6_5_a2,
author = {A. N. Tyurin},
title = {On the set of singularities of the {Poincar\'e} divisor of the {Picard} variety of the {Fano} surface of a~nonsingular cubic},
journal = {Izvestiya. Mathematics},
pages = {938--948},
year = {1972},
volume = {6},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_5_a2/}
}
TY - JOUR AU - A. N. Tyurin TI - On the set of singularities of the Poincaré divisor of the Picard variety of the Fano surface of a nonsingular cubic JO - Izvestiya. Mathematics PY - 1972 SP - 938 EP - 948 VL - 6 IS - 5 UR - http://geodesic.mathdoc.fr/item/IM2_1972_6_5_a2/ LA - en ID - IM2_1972_6_5_a2 ER -
A. N. Tyurin. On the set of singularities of the Poincaré divisor of the Picard variety of the Fano surface of a nonsingular cubic. Izvestiya. Mathematics, Tome 6 (1972) no. 5, pp. 938-948. http://geodesic.mathdoc.fr/item/IM2_1972_6_5_a2/
[1] Bombieri E., Swinnerton-Dyer H. P. F., “On the local Zeta-function of a cubic threefold”, Annali della Scuola Normale superiore di Pisa (III), XXI:1 (1967), 1–29 | MR
[2] Tyurin A. N., “Geometriya poverkhnosti Fano neosoboi kubiki $F\subset P^4$ i teoremy Torelli dlya poverkhnostei Fano i kubik”, Izv. AN SSSR. Ser. matem., 35 (1971), 498–529 | Zbl