A~resonance theorem and series in eigenfunctions of the Laplacian
Izvestiya. Mathematics , Tome 6 (1972) no. 4, pp. 788-806

Voir la notice de l'article provenant de la source Math-Net.Ru

By means of a resonance theorem we will establish the existence of functions in $L_p(\Omega)$ (where $\Omega$ is an $N$-dimensional region) whose expansion in eigenfunctions of the Laplacian is not Riesz-summable of order $a$ if $1\leqslant p\frac{2N}{N+1}$.
@article{IM2_1972_6_4_a6,
     author = {E. M. Nikishin},
     title = {A~resonance theorem and series in eigenfunctions of the {Laplacian}},
     journal = {Izvestiya. Mathematics },
     pages = {788--806},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a6/}
}
TY  - JOUR
AU  - E. M. Nikishin
TI  - A~resonance theorem and series in eigenfunctions of the Laplacian
JO  - Izvestiya. Mathematics 
PY  - 1972
SP  - 788
EP  - 806
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a6/
LA  - en
ID  - IM2_1972_6_4_a6
ER  - 
%0 Journal Article
%A E. M. Nikishin
%T A~resonance theorem and series in eigenfunctions of the Laplacian
%J Izvestiya. Mathematics 
%D 1972
%P 788-806
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a6/
%G en
%F IM2_1972_6_4_a6
E. M. Nikishin. A~resonance theorem and series in eigenfunctions of the Laplacian. Izvestiya. Mathematics , Tome 6 (1972) no. 4, pp. 788-806. http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a6/