On a~class of quasihomogeneous affine varieties
Izvestiya. Mathematics , Tome 6 (1972) no. 4, pp. 743-758.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a classification of irreducible affine algebraic varieties which are quasihomogeneous with respect to a regular action by a connected linear group of automorphisms and are such that the isotropy subgroup of a point in general position contains a maximal unipotent subgroup of the group of transformations. We find criteria for the normality and factoriality of such varieties. We compute the divisor class group and give a complete description of the orbits in such varieties.
@article{IM2_1972_6_4_a3,
     author = {\`E. B. Vinberg and V. L. Popov},
     title = {On a~class of quasihomogeneous affine varieties},
     journal = {Izvestiya. Mathematics },
     pages = {743--758},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a3/}
}
TY  - JOUR
AU  - È. B. Vinberg
AU  - V. L. Popov
TI  - On a~class of quasihomogeneous affine varieties
JO  - Izvestiya. Mathematics 
PY  - 1972
SP  - 743
EP  - 758
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a3/
LA  - en
ID  - IM2_1972_6_4_a3
ER  - 
%0 Journal Article
%A È. B. Vinberg
%A V. L. Popov
%T On a~class of quasihomogeneous affine varieties
%J Izvestiya. Mathematics 
%D 1972
%P 743-758
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a3/
%G en
%F IM2_1972_6_4_a3
È. B. Vinberg; V. L. Popov. On a~class of quasihomogeneous affine varieties. Izvestiya. Mathematics , Tome 6 (1972) no. 4, pp. 743-758. http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a3/

[1] Godement R., “A theory of spherical functions. I.”, Trans. Amer. Math. Soc., 73:3 (1956), 496–556 | DOI | MR

[2] Gelfand I. M., Naimark M. A., Unitarnye predstavleniya klassicheskikh grupp, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 36, 1950 | MR | Zbl

[3] Zhelobenko D. P., “Klassicheskie gruppy. Spektralnyi analiz konechnomernykh predstavlenii”, Uspekhi matem. nauk, XVII:1(130) (1962), 27–120 | MR

[4] Bialynicki-Birula A., “On homogeneous affine spaces of linear aglebraic groups”, Amer. J. Math., 85 (1963), 577–582 | DOI | MR | Zbl

[5] Popov V. L., “Kriterii stabilnosti deistviya poluprostoi gruppy na faktorialnom mnogoobrazii”, Izv. AN SSSR. Ser. matem., 34 (1970), 523–531 | MR

[6] Popov V. L., “O stabilnosti deistviya algebraicheskoi gruppy na algebraicheskom mnogoobrazii”, Izv. AN SSSR. Ser. matem., 36:2 (1972), 371–385 | MR | Zbl

[7] Popov V. L., “Gruppy Pikara odnorodnykh prostranstv lineinykh algebraicheskikh grupp i odnomernye odnorodnye vektornye rassloeniya”, Uspekhi matem. nauk, 27:4 (1972)

[8] Voskresenskii V. E., “Gruppy Pikara lineinykh algebraicheskikh grupp. Issledovaniya po teorii chisel”, Tr. Saratovsk. un-ta, 1969, no. 3, 7–16 | MR | Zbl

[9] Shafarevich I. R., “Osnovy algebraicheskoi geometrii”, Uspekhi matem. nauk, XXIV:6(150) (1969), 3–184 | MR

[10] Nagata M., “A remark on the unique factorization theorem”, J. Math. Soc. Japan, 9:1 (1957), 143–145 | MR | Zbl

[11] Igusa J.-I., “On the arithmetic normality of the Grassman variety”, Proc. Nat. Acad. Sci. USA, 40:5 (1954), 309–313 | DOI | MR | Zbl

[12] Nagata M., “Note on orbit spaces”, Osaka Mech. J., 14 (1962), 21–31 | MR | Zbl

[13] Rosenlicht M., “Some rationality questions on algebraic groups”, Ann. Math., 43 (1957), 25–50 | MR | Zbl