On~an~estimate for solutions of Thue's equation
Izvestiya. Mathematics , Tome 6 (1972) no. 4, pp. 705-734.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we derive a new effective estimate for solutions of Thue's equation as a function of the coefficients of the equation.
@article{IM2_1972_6_4_a1,
     author = {V. G. Sprindzhuk},
     title = {On~an~estimate for solutions of {Thue's} equation},
     journal = {Izvestiya. Mathematics },
     pages = {705--734},
     publisher = {mathdoc},
     volume = {6},
     number = {4},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a1/}
}
TY  - JOUR
AU  - V. G. Sprindzhuk
TI  - On~an~estimate for solutions of Thue's equation
JO  - Izvestiya. Mathematics 
PY  - 1972
SP  - 705
EP  - 734
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a1/
LA  - en
ID  - IM2_1972_6_4_a1
ER  - 
%0 Journal Article
%A V. G. Sprindzhuk
%T On~an~estimate for solutions of Thue's equation
%J Izvestiya. Mathematics 
%D 1972
%P 705-734
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a1/
%G en
%F IM2_1972_6_4_a1
V. G. Sprindzhuk. On~an~estimate for solutions of Thue's equation. Izvestiya. Mathematics , Tome 6 (1972) no. 4, pp. 705-734. http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a1/

[1] Thue A., “Über Annäherungwerte algebraischer Zahlen”, J. reine und angew. Math., 135 (1909), 284–305 | Zbl

[2] Baker A., “Contributions to the theory of Diophantine equations. I. On the representation of integers by binary forms”, Philos. Trans. Royal Soc. London (A), 263:1139 (1968), 173–191 | DOI | MR | Zbl

[3] Baker A., “Contributions to the theory of Diophantine equations. II. The Diophantine equation $y^2=x^3+k$”, Philos. Trans. Royal Soc. London(A), 263:1139 (1968), 193–208 | DOI | MR | Zbl

[4] Sprindzhuk V. G., “Novoe primenenie $p$-adicheskogo analiza k predstavleniyam chisel binarnymi formami”, Izv. AN SSSR. Ser. matem., 34 (1970), 1038–1063 | Zbl

[5] Sprindzhuk V. G., “O ratsionalnykh priblizheniyakh k algebraicheskim chislam”, Izv. AN SSSR. Ser. matem., 35 (1971), 991–1007 | Zbl

[6] Sprindzhuk V. G., “O naibolshem prostom delitele binarnoi formy”, Dokl. AN BSSR, 15:5 (1971), 389–391 | Zbl

[7] Vinogradov I. M., Metod trigonometricheskikh summ v teorii chisel, Nauka, M., 1971 | MR

[8] Gekke E., Lektsii po teorii algebraicheskikh chisel, M., L., 1940