Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1972_6_4_a1, author = {V. G. Sprindzhuk}, title = {On~an~estimate for solutions of {Thue's} equation}, journal = {Izvestiya. Mathematics }, pages = {705--734}, publisher = {mathdoc}, volume = {6}, number = {4}, year = {1972}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a1/} }
V. G. Sprindzhuk. On~an~estimate for solutions of Thue's equation. Izvestiya. Mathematics , Tome 6 (1972) no. 4, pp. 705-734. http://geodesic.mathdoc.fr/item/IM2_1972_6_4_a1/
[1] Thue A., “Über Annäherungwerte algebraischer Zahlen”, J. reine und angew. Math., 135 (1909), 284–305 | Zbl
[2] Baker A., “Contributions to the theory of Diophantine equations. I. On the representation of integers by binary forms”, Philos. Trans. Royal Soc. London (A), 263:1139 (1968), 173–191 | DOI | MR | Zbl
[3] Baker A., “Contributions to the theory of Diophantine equations. II. The Diophantine equation $y^2=x^3+k$”, Philos. Trans. Royal Soc. London(A), 263:1139 (1968), 193–208 | DOI | MR | Zbl
[4] Sprindzhuk V. G., “Novoe primenenie $p$-adicheskogo analiza k predstavleniyam chisel binarnymi formami”, Izv. AN SSSR. Ser. matem., 34 (1970), 1038–1063 | Zbl
[5] Sprindzhuk V. G., “O ratsionalnykh priblizheniyakh k algebraicheskim chislam”, Izv. AN SSSR. Ser. matem., 35 (1971), 991–1007 | Zbl
[6] Sprindzhuk V. G., “O naibolshem prostom delitele binarnoi formy”, Dokl. AN BSSR, 15:5 (1971), 389–391 | Zbl
[7] Vinogradov I. M., Metod trigonometricheskikh summ v teorii chisel, Nauka, M., 1971 | MR
[8] Gekke E., Lektsii po teorii algebraicheskikh chisel, M., L., 1940