Expansion in eigenfunctions of integral operators of convolution on a~finite interval with kernels whose Fourier transforms are rational. ``Weakly'' nonselfadjoint regular kernels
Izvestiya. Mathematics , Tome 6 (1972) no. 3, pp. 587-630.

Voir la notice de l'article provenant de la source Math-Net.Ru

A study is made of the asymptotic behavior of the eigenvalues and of expansions in the root vectors of the class of integral operators specified in the title. If some natural conditions, ensuring “regularity” of the asymptotic behavior of the spectrum, are imposed on the kernel, the root vectors form a basis in $L_p(0,T)$ $(1$ and a Riesz basis in $L_2(0,T)$.
@article{IM2_1972_6_3_a9,
     author = {B. V. Pal'tsev},
     title = {Expansion in eigenfunctions of integral operators of convolution on a~finite interval with kernels whose {Fourier} transforms are rational. {``Weakly''} nonselfadjoint regular kernels},
     journal = {Izvestiya. Mathematics },
     pages = {587--630},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_3_a9/}
}
TY  - JOUR
AU  - B. V. Pal'tsev
TI  - Expansion in eigenfunctions of integral operators of convolution on a~finite interval with kernels whose Fourier transforms are rational. ``Weakly'' nonselfadjoint regular kernels
JO  - Izvestiya. Mathematics 
PY  - 1972
SP  - 587
EP  - 630
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1972_6_3_a9/
LA  - en
ID  - IM2_1972_6_3_a9
ER  - 
%0 Journal Article
%A B. V. Pal'tsev
%T Expansion in eigenfunctions of integral operators of convolution on a~finite interval with kernels whose Fourier transforms are rational. ``Weakly'' nonselfadjoint regular kernels
%J Izvestiya. Mathematics 
%D 1972
%P 587-630
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1972_6_3_a9/
%G en
%F IM2_1972_6_3_a9
B. V. Pal'tsev. Expansion in eigenfunctions of integral operators of convolution on a~finite interval with kernels whose Fourier transforms are rational. ``Weakly'' nonselfadjoint regular kernels. Izvestiya. Mathematics , Tome 6 (1972) no. 3, pp. 587-630. http://geodesic.mathdoc.fr/item/IM2_1972_6_3_a9/

[1] Birkhoff G. D., “Boundary value and expansion problems of ordinary linear differential equations”, Trans. Amer. Math. Soc., 9 (1908), 373–395 | DOI | MR | Zbl

[2] Tamarkin Ya. D., O nekotorykh obschikh zadachakh teorii obyknovennykh lineinykh differentsialnykh uravnenii, Petrograd, 1917 | Zbl

[3] Ganin M. P., “Ob odnom integralnom uravnenii Fredgolma s yadrom, zavisyaschim ot raznosti argumentov”, Izv. vuzov. Matematika, 1963, no. 2, 31–43 | MR | Zbl

[4] Rosenblatt M., “Some results on the asymptotic behaviour of eigenvalues for a class of integral equations with translation kernels”, J. Math. Mech., 12:4 (1963), 619–628 | MR | Zbl

[5] Widom H., “Asymptotic behaviour of the eigenvalues of certain integral equations. II”, Arch. Rat. Mech. Anal., 17:3 (1964), 215–229 | DOI | MR | Zbl

[6] Mordasova G. M., “Asimptotika sobstvennykh znachenii lineinogo integralnogo uravneniya s razryvnym yadrom”, Dokl. AN SSSR, 142:5 (1962), 1023–1025 | MR

[7] Zakhar-Itkin M. X., “O roste sobstvennykh chisel lineinogo integralnogo uravneniya”, Vestn. MGU, matem., mekhan., 1966, no. 4, 3–19 | Zbl

[8] Widom H., “Asymptotic behaviour of the eigenvalues of certain integral equations. I”, Trans. Amer. Math. Soc., 109:2 (1963), 278–295 | DOI | MR | Zbl

[9] Evgrafov M. A., “Ob odnom integralnom preobrazovanii i ego primenenii k otsenke chisla sobstvennykh znachenii nekotorykh integralnykh operatorov”, Tr. Mosk. matem. ob-va, 17 (1967), 273–292 | MR | Zbl

[10] Birman M. Sh., Solomyak M. Z., “Asimptotika spektra slabo polyarnykh operatorov”, Izv. AN SSSR. Ser. matem., 34 (1970), 1142–1158 | MR | Zbl

[11] Paltsev B. V., “Asimptoticheskoe povedenie sobstvennykh znachenii operatorov svertki na konechnom intervale s yadrami, preobrazovaniya Fure kotorykh ratsionalny”, Dokl. AN SSSR, 194:4 (1970), 774–777

[12] Lidskii V. B., “O summiruemosti ryadov po glavnym vektoram nesamosopryazhennykh operatorov”, Tr. Mosk. matem. ob-va, 11 (1962), 3–35 | MR

[13] Mikhlin S. G., “O multiplikatorakh integralov Fure”, Dokl. AN SSSR, 109:4 (1956), 701–703 | Zbl

[14] Bari N. K., “Biortogonalnye sistemy i bazisy v gilbertovom prostranstve”, Matematika (IV), Uch. zap. MGU, 148, 1951, 69–107 | MR

[15] Mikhailov V. P., “O bazisakh Rissa v $L^2(0,1)$”, Dokl. AN SSSR, 144:5 (1962), 981–984

[16] Keselman G. M., “O bezuslovnoi skhodimosti razlozhenii po sobstvennym funktsiyam nekotorykh differentsialnykh operatorov”, Izv. vuzov. Matematika, 1964, no. 2, 82–93 | MR

[17] Lyusternik L. A., Sobolev V. I., Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR

[18] Danford N., Shvarts Dzh., Lineinye operatory. Obschaya teoriya, IL, M., 1962

[19] Gokhberg I. Ts., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[20] Titchmarsh E., Vvedenie v teoriyu integralov Fure, Gostekhizdat, M., L., 1948

[21] Fuks B. A., Levin V. N., Funktsii kompleksnogo peremennogo i nekotorye ikh prilozheniya. Spetsialnye glavy, Gostekhizdat, M., L., 1951

[22] Gelfond A. O., Ischislenie konechnykh raznostei, Fizmatgiz, M., 1959 | MR