On biorthogonal expansions in exponential functions
Izvestiya. Mathematics , Tome 6 (1972) no. 3, pp. 579-586
Voir la notice de l'article provenant de la source Math-Net.Ru
An equiconvergence theorem for nonharmonic Fourier series of the form $\sum a_ne^{i\lambda_nx}$ and ordinary Fourier series is proved for functions in $L^p(-\pi,\pi)$, $p>1$, when the exponents $\{\lambda_n\}$ are the roots of a member of a certain class of entire functions.
@article{IM2_1972_6_3_a8,
author = {A. M. Sedletskii},
title = {On biorthogonal expansions in exponential functions},
journal = {Izvestiya. Mathematics },
pages = {579--586},
publisher = {mathdoc},
volume = {6},
number = {3},
year = {1972},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_3_a8/}
}
A. M. Sedletskii. On biorthogonal expansions in exponential functions. Izvestiya. Mathematics , Tome 6 (1972) no. 3, pp. 579-586. http://geodesic.mathdoc.fr/item/IM2_1972_6_3_a8/