Continuation of bounded holomorphic functions from submanifolds in general position to strictly pseudoconvex domains
Izvestiya. Mathematics , Tome 6 (1972) no. 3, pp. 536-563.

Voir la notice de l'article provenant de la source Math-Net.Ru

Any bounded holomorphic function defined on an analytic closed submanifold in general position in a strictly pseudoconvex domain can be continued to a bounded holomorphic function in the entire domain.
@article{IM2_1972_6_3_a6,
     author = {G. M. Henkin},
     title = {Continuation of bounded holomorphic functions from submanifolds in general position to strictly pseudoconvex domains},
     journal = {Izvestiya. Mathematics },
     pages = {536--563},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_3_a6/}
}
TY  - JOUR
AU  - G. M. Henkin
TI  - Continuation of bounded holomorphic functions from submanifolds in general position to strictly pseudoconvex domains
JO  - Izvestiya. Mathematics 
PY  - 1972
SP  - 536
EP  - 563
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1972_6_3_a6/
LA  - en
ID  - IM2_1972_6_3_a6
ER  - 
%0 Journal Article
%A G. M. Henkin
%T Continuation of bounded holomorphic functions from submanifolds in general position to strictly pseudoconvex domains
%J Izvestiya. Mathematics 
%D 1972
%P 536-563
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1972_6_3_a6/
%G en
%F IM2_1972_6_3_a6
G. M. Henkin. Continuation of bounded holomorphic functions from submanifolds in general position to strictly pseudoconvex domains. Izvestiya. Mathematics , Tome 6 (1972) no. 3, pp. 536-563. http://geodesic.mathdoc.fr/item/IM2_1972_6_3_a6/

[1] Hoffman K., Banach spaces of analytic functions, Prentice-Hall, Inc. XIII ; K. Gofman, Banakhovy prostranstva analiticheskikh funktsii, IL, M., 1963 | MR

[2] Rudin W., Function theory in polydiscs, W. A. Benjamin Inc., New York, Amsterdam, 1969 | MR | Zbl

[3] Khenkin G. M., “Approksimatsiya funktsii v psevdovypuklykh oblastyakh i teorema Z. L. Leibenzona”, Byull. Polskoi Akad. nauk. Ser. matem., astronom. i fiz. nauk, XIX:1 (1971), 37–42

[4] Leray J., “Le calcul différentiel et intégral sur une variété analytique complexe”, Bull. Soc. Math. France, 87 (1959), 81–180 ; Zh. Lere, Differentsialnoe i integralnoe ischislenie na kompleksnom analiticheskom mnogoobrazii, IL, M., 1961 | MR | Zbl

[5] Khenkin G. M., “Integralnoe predstavlenie funktsii, golomorfnykh v strogo psevdovypuklykh oblastyakh i nekotorye prilozheniya”, Matem. sb., 78:4 (1969), 611–632 | Zbl

[6] Kerzman N., “Hölder and $L_p$-estimates for solutions of $\overline\partial y=f$ in strongly pseudoconvex domains”, Bull. Amer. Math. Soc., 76:4 (1970), 860–864 ; Comm. Pure Appl. Math., XXIV (1971), 301–379 | DOI | MR | Zbl | DOI | MR

[7] Romanov A. V., Khenkin G. M., “Tochnye gelderovskie otsenki reshenii $\bar\partial$-uravneniya”, Izv. AN SSSR. Ser. matem., 35:5 (1971), 1171–1183 | MR | Zbl

[8] Narasimhan R., “Compact analytic variéties”, Enc. Math., 14 (1968), 75–98 | MR | Zbl

[9] Schneider M., “Vollständige Durchschnittie in Steinschen Mannigfaltigkeiten”, Math. Ann., 186:3 (1970), 191–200 | DOI | MR | Zbl

[10] Forster O., “Some remarks on parallelizable Stein Manifolds”, Bull. Amer. Math. Soc., 73:5 (1967), 712–715 | DOI | MR

[11] Bishop E., “Analytic functions with values in a Frechet space”, Pacif. J. Math., 12:4 (1962), 1177–1192 | MR

[12] Bungart L., “Holomorphic functions with values in locally convex spaces and applications to integral formulas”, Trans. Amer. Math. Soc., 111:2 (1964), 317–344 | DOI | MR | Zbl