Equimorphisms of Riemannian manifolds
Izvestiya. Mathematics, Tome 6 (1972) no. 3, pp. 518-528
Cet article a éte moissonné depuis la source Math-Net.Ru
We establish a sufficient condition for stability of Riemannian manifolds, i.e. a property according to which every equimorphism of this manifold can be topologically extended to its absolute.
@article{IM2_1972_6_3_a4,
author = {V. A. Efremovich and \`E. A. Loginov and E. S. Tikhomirova},
title = {Equimorphisms of {Riemannian} manifolds},
journal = {Izvestiya. Mathematics},
pages = {518--528},
year = {1972},
volume = {6},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_3_a4/}
}
V. A. Efremovich; È. A. Loginov; E. S. Tikhomirova. Equimorphisms of Riemannian manifolds. Izvestiya. Mathematics, Tome 6 (1972) no. 3, pp. 518-528. http://geodesic.mathdoc.fr/item/IM2_1972_6_3_a4/
[1] Efremovich V., Loginov E., Tikhomirova E., “Ekvimorfizmy rimanovykh mnogoobrazii”, Dokl. AN SSSR, 197:1 (1971), 25–28 | MR | Zbl
[2] Efremovich V., Tikhomirova E., “Ekvimorfizmy giperbolicheskikh prostranstv”, Izv. AN SSSR. Ser. matem., 28 (1964), 1139–1144 | Zbl
[3] Browder W., Levine J., Livesay G. R., “Finding a boundary for an open manifold”, Amer. J. Math., 87:4 (1965), 1017–1028 | DOI | MR | Zbl