N\'eron pairing and quasicharacters
Izvestiya. Mathematics , Tome 6 (1972) no. 3, pp. 491-503.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we answer a question posed by Yu. I. Manin: for which quasicharacters does there exist a generalized Néron pairing? It turns out that the quasicharacter must trivialize some explicitly described group of roots of unity. In addition, we establish in this paper a connection between generalized Néron pairings and the biextensions of Mumford.
@article{IM2_1972_6_3_a2,
     author = {Yu. G. Zarhin},
     title = {N\'eron pairing and quasicharacters},
     journal = {Izvestiya. Mathematics },
     pages = {491--503},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_3_a2/}
}
TY  - JOUR
AU  - Yu. G. Zarhin
TI  - N\'eron pairing and quasicharacters
JO  - Izvestiya. Mathematics 
PY  - 1972
SP  - 491
EP  - 503
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1972_6_3_a2/
LA  - en
ID  - IM2_1972_6_3_a2
ER  - 
%0 Journal Article
%A Yu. G. Zarhin
%T N\'eron pairing and quasicharacters
%J Izvestiya. Mathematics 
%D 1972
%P 491-503
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1972_6_3_a2/
%G en
%F IM2_1972_6_3_a2
Yu. G. Zarhin. N\'eron pairing and quasicharacters. Izvestiya. Mathematics , Tome 6 (1972) no. 3, pp. 491-503. http://geodesic.mathdoc.fr/item/IM2_1972_6_3_a2/

[1] Lang S., Abelian varieties, Interscience Tracts in Pure and Applied Mathematics, No 7, Interscience Publishers, New York, 1959 | MR

[2] Maklein S., Gomologiya, Mir, M., 1966

[3] Manin Yu. I., “Tonkaya struktura vysoty Nerona–Teita”, Matem. sb., 83(125):3 (1970), 332–348 | MR

[4] Neron A., “Quasi-fonctions et hauteurs sur les varietés abéliènnes”, Ann. Math., 82:2 (1965), 249–331 | DOI | MR | Zbl

[5] Tate J., “Fourier analysis in number fields and Hecke's zeta functions”, Algebraic number theory, Acad. Press, London, New York, 1967, 305–347 | MR

[6] Mumford D., “Bi-extensions of formal groups”, Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, London, 1969, 307–322 | MR