Néron pairing and quasicharacters
Izvestiya. Mathematics, Tome 6 (1972) no. 3, pp. 491-503
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we answer a question posed by Yu. I. Manin: for which quasicharacters does there exist a generalized Néron pairing? It turns out that the quasicharacter must trivialize some explicitly described group of roots of unity. In addition, we establish in this paper a connection between generalized Néron pairings and the biextensions of Mumford.
@article{IM2_1972_6_3_a2,
author = {Yu. G. Zarhin},
title = {N\'eron pairing and quasicharacters},
journal = {Izvestiya. Mathematics},
pages = {491--503},
year = {1972},
volume = {6},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_3_a2/}
}
Yu. G. Zarhin. Néron pairing and quasicharacters. Izvestiya. Mathematics, Tome 6 (1972) no. 3, pp. 491-503. http://geodesic.mathdoc.fr/item/IM2_1972_6_3_a2/
[1] Lang S., Abelian varieties, Interscience Tracts in Pure and Applied Mathematics, No 7, Interscience Publishers, New York, 1959 | MR
[2] Maklein S., Gomologiya, Mir, M., 1966
[3] Manin Yu. I., “Tonkaya struktura vysoty Nerona–Teita”, Matem. sb., 83(125):3 (1970), 332–348 | MR
[4] Neron A., “Quasi-fonctions et hauteurs sur les varietés abéliènnes”, Ann. Math., 82:2 (1965), 249–331 | DOI | MR | Zbl
[5] Tate J., “Fourier analysis in number fields and Hecke's zeta functions”, Algebraic number theory, Acad. Press, London, New York, 1967, 305–347 | MR
[6] Mumford D., “Bi-extensions of formal groups”, Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, London, 1969, 307–322 | MR