The method of perturbations for singular problems
Izvestiya. Mathematics , Tome 6 (1972) no. 3, pp. 631-648.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper the regularization of a singularity with respect to a parameter is derived by means of an extension of the original operator and subsequent application of perturbation theory in an unbounded space, and used to solve an “extended” problem asymptotically. It is proved that this asymptotic solution is unique. An appropriate restriction of the asymptotic solution thus obtained will be an asymptotic solution of the original problem; this restriction is also unique. The theory of this method is illustrated by an example of an ordinary linear system of general form.
@article{IM2_1972_6_3_a10,
     author = {S. A. Lomov},
     title = {The method of perturbations for singular problems},
     journal = {Izvestiya. Mathematics },
     pages = {631--648},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_3_a10/}
}
TY  - JOUR
AU  - S. A. Lomov
TI  - The method of perturbations for singular problems
JO  - Izvestiya. Mathematics 
PY  - 1972
SP  - 631
EP  - 648
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1972_6_3_a10/
LA  - en
ID  - IM2_1972_6_3_a10
ER  - 
%0 Journal Article
%A S. A. Lomov
%T The method of perturbations for singular problems
%J Izvestiya. Mathematics 
%D 1972
%P 631-648
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1972_6_3_a10/
%G en
%F IM2_1972_6_3_a10
S. A. Lomov. The method of perturbations for singular problems. Izvestiya. Mathematics , Tome 6 (1972) no. 3, pp. 631-648. http://geodesic.mathdoc.fr/item/IM2_1972_6_3_a10/

[1] Birkhoff G. D., “On the asymptotic character in the solutions of certain linear differential equations containing a parameter”, Trans. Amer. Math. Soc., 9 (1908), 219–231 | DOI | MR

[2] Vasileva A. B., “Asimptotika reshenii nekotorykh zadach dlya obyknovennykh nelineinykh differentsialnykh uravnenii”, Uspekhi matem. nauk, 18:3 (1963), 15–86 | MR

[3] Vishik M. I., Lyusternik L. A., “Regulyarnoe vyrozhdenie i pogranichnyi sloi”, Uspekhi matem. nauk, 12:5 (1957), 3–122 | MR | Zbl

[4] Koddington E. A., Levinson N., Teoriya obyknovennykh differentsialnykh uravnenii, IL, M., 1958

[5] Lomov S. A., “Asimptoticheskie resheniya”, Izv. AN SSSR. Ser. matem., 32 (1968), 884–913 | MR | Zbl

[6] Lomov S. A., “Asimptoticheskoe reshenie parabolicheskoi zadachi s parametrom”, Dokl. nauchn.-tekhn. konferentsii MEI po itogam nauchno-issled. rabot za 1968–1969 gody. Sekts. matem., M., 1969, 51–54

[7] Lomov S. A., “Asimptoticheskoe reshenie differentsialnykh uravnenii s parametrami”, Dokl. AN SSSR, 196:2 (1970), 36–39

[8] Maslov V. P., “Perekhod pri $\hbar\to 0$ uravneniya Gaizenberga v uravnenie dinamiki odnoatomnogo idealnogo gaza i kvantovanie relyativistskoi gidrodinamiki”, Teoretich. i matematich. fizika, 1:3 (1969), 378–383 | MR

[9] Tikhonov A. N., “Sistemy differentsialnykh uravnenii, soderzhaschie malye parametry pri proizvodnykh”, Matem. sb., 31(73) (1952), 575–586 | Zbl

[10] Trenogin V. A., “Razvitie i prilozheniya asimptoticheskogo metoda Lyusternika–Vishika”, Uspekhi matem. nauk, XXV:4(154) (1970), 123–156 | MR

[11] Territtin X., “Asimptoticheskoe povedenie reshenii sistem obyknovennykh differentsialnykh uravnenii”, Matematika, 1:2 (1957), 29–59

[12] Fedoryuk M. V., “Asimptotika reshenii obyknovennykh lineinykh differentsialnykh uravnenii $n$-go poryadka”, Differents. uravn., 2:4 (1966), 492–507

[13] Shkil N. I., “Postroenie asimptoticheskogo resheniya sistemy uravnenii v sluchae kratnykh elementarnykh delitelei”, Differents. uravn., 5:6 (1969), 1002–1009

[14] Krein S. G., Lineinye differentsialnye uravneniya v banakhovom prostranstve, Nauka, M., 1967 | MR

[15] Vazov V., Asimptoticheskie razlozheniya reshenii obyknovennykh differentsialnykh uravnenii, Mir, M., 1968

[16] Shkil N. I., O nekotorykh asimptoticheskikh metodakh v teorii lineinykh differentsialnykh uravnenii s medlenno menyayuschimisya koeffitsientami, Doktorskaya dissertatsiya, Kiev, 1968 | Zbl