Uniform approximation of the remainder term in the Dirichlet divisor problem
Izvestiya. Mathematics , Tome 6 (1972) no. 3, pp. 467-475
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study the average value of the function $\tau_k(n)$, the number of representations of $n$ as a product of $k$ natural factors, $n\leqslant x$, with a remainder term which is uniform in $x$ and $k$.
@article{IM2_1972_6_3_a0,
author = {A. A. Karatsuba},
title = {Uniform approximation of the remainder term in the {Dirichlet} divisor problem},
journal = {Izvestiya. Mathematics },
pages = {467--475},
publisher = {mathdoc},
volume = {6},
number = {3},
year = {1972},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_3_a0/}
}
A. A. Karatsuba. Uniform approximation of the remainder term in the Dirichlet divisor problem. Izvestiya. Mathematics , Tome 6 (1972) no. 3, pp. 467-475. http://geodesic.mathdoc.fr/item/IM2_1972_6_3_a0/