Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1972_6_3_a0, author = {A. A. Karatsuba}, title = {Uniform approximation of the remainder term in the {Dirichlet} divisor problem}, journal = {Izvestiya. Mathematics }, pages = {467--475}, publisher = {mathdoc}, volume = {6}, number = {3}, year = {1972}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_3_a0/} }
A. A. Karatsuba. Uniform approximation of the remainder term in the Dirichlet divisor problem. Izvestiya. Mathematics , Tome 6 (1972) no. 3, pp. 467-475. http://geodesic.mathdoc.fr/item/IM2_1972_6_3_a0/
[1] Dirichlet L., “Über die Bestimmung der mittleren Werte in der Zahlentheorie”, Abhand. Ak. Wiss. Berlin, 1849, 69–83; reprinted in Werke, 2, 49–66
[2] Voronoi G., “Sur un probléme du calcul des fonctions asymptotiques”, J. Math., 126 (1903), 241–282 | Zbl
[3] Landau E., “Über die Anzahl der Gitterpunkte in gewissen Bereichen”, Nachr. Königl. Gesell. Wiss. Gottingen, Math.-phys. Klassen, 6 (1912), 687–771
[4] Hardy G. H., Littlewood I. E., “The approximate functional equation in the theory of the zeta-function, with applications to the divisor problems of Dirichlet and Piltz”, Proc. London Math. Soc. (2), 21 (1922), 39–74 | DOI
[5] Mardzhanishvili K. K., “Otsenka odnoi arifmeticheskoi summy”, Dokl. AN SSSR, 22:7 (1939), 391–393
[6] Vinogradov I. M., “Novaya otsenka $\zeta(1+it)$”, Izv. AN CSCP. Ser. matem., 22 (1958), 161–164 | MR | Zbl
[7] Karatsuba A. A., “Otsenki trigonometricheskikh summ metodom I. M. Vinogradova i ikh primeneniya”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, 112, 1971, 241–255 | Zbl
[8] Titchmarsh E. K., Teoriya dzeta-funktsii Rimana, IL, M., 1953