Normal solvability of linear differential equations in the complex plane
Izvestiya. Mathematics , Tome 6 (1972) no. 2, pp. 445-466
Voir la notice de l'article provenant de la source Math-Net.Ru
The operator $L_nY=A(z)Y'(z)+B(z)Y(z)$, where $A(z)$ and $B(z)$ are square $n$th order matrices, regular in a region $G$ of arbitrary connectivity, and $Y(z)$ is a single-column matrix, regular in $G$, is investigated. The operator $L_nY$ is shown to be normally solvable in the space $A^n(G)$ of single-column matrices regular in $G$, and in certain subspaces of $A^n(G)$, and its index is evaluated.
@article{IM2_1972_6_2_a7,
author = {Yu. F. Korobeinik},
title = {Normal solvability of linear differential equations in the complex plane},
journal = {Izvestiya. Mathematics },
pages = {445--466},
publisher = {mathdoc},
volume = {6},
number = {2},
year = {1972},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_2_a7/}
}
Yu. F. Korobeinik. Normal solvability of linear differential equations in the complex plane. Izvestiya. Mathematics , Tome 6 (1972) no. 2, pp. 445-466. http://geodesic.mathdoc.fr/item/IM2_1972_6_2_a7/