Adjoint functions and integrals
Izvestiya. Mathematics , Tome 6 (1972) no. 2, pp. 429-443.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is proved that $A$-integrals and $B$-integrals are inconsistent with the Denjoy–Hincin integral of functions which are adjoint to a summable function. Furthermore, the paper establishes nonadditivity of the $B$-integrals on an interval.
@article{IM2_1972_6_2_a6,
     author = {T. P. Lukashenko},
     title = {Adjoint functions and integrals},
     journal = {Izvestiya. Mathematics },
     pages = {429--443},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_2_a6/}
}
TY  - JOUR
AU  - T. P. Lukashenko
TI  - Adjoint functions and integrals
JO  - Izvestiya. Mathematics 
PY  - 1972
SP  - 429
EP  - 443
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1972_6_2_a6/
LA  - en
ID  - IM2_1972_6_2_a6
ER  - 
%0 Journal Article
%A T. P. Lukashenko
%T Adjoint functions and integrals
%J Izvestiya. Mathematics 
%D 1972
%P 429-443
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1972_6_2_a6/
%G en
%F IM2_1972_6_2_a6
T. P. Lukashenko. Adjoint functions and integrals. Izvestiya. Mathematics , Tome 6 (1972) no. 2, pp. 429-443. http://geodesic.mathdoc.fr/item/IM2_1972_6_2_a6/

[1] Zigmund A., Trigonometricheskie ryady, t. I, Mir, M., 1965 | MR

[2] Bari N. K., Trigonometricheskie ryady, GIFML, M., 1961 | MR

[3] Lukashenko T. P., “O funktsiyakh, sopryazhennykh s D–Kh-integriruemymi funktsiyami”, Izv. AN SSSR. Ser. matem., 35 (1971), 381–407 | Zbl

[4] Khinchin A. Ya., “O protsesse integrirovaniya Denjoy”, Matem. sb., 30:4 (1918), 543–557 | Zbl

[5] Vinogradova I. A., “O neopredelennom $A$-integrale. I”, Izv, AN SSSR. Ser. matem., 25 (1961), 113–142 | MR | Zbl

[6] Vinogradova I. A., “O neopredelennom $A$-integrale. II”, Izv. AN SSSR, Ser. matem., 27 (1963), 761–776 | MR | Zbl

[7] Denjoy A., “Sur l'intégration riemannienne”, Compt. Rend. Acad. Sci. Paris, 169 (1919), 219–221 | Zbl

[8] Boks T. J., “Sur le rapport entre les méthodes d'intégration de Riemann et de Lebesgue”, Rend. Circolo. Mat. Palermo, 45 (1921), 211–264 | DOI | Zbl