Inequalities for differentiable periodic functions and best approximation of one class of functions by another
Izvestiya. Mathematics , Tome 6 (1972) no. 2, pp. 417-428

Voir la notice de l'article provenant de la source Math-Net.Ru

New results are obtained in this paper which elucidate properties of differentiable periodic functions connected with rearrangements. These results are applied in order to obtain a sharp estimate of the best uniform approximation of functions of the class $W^rH_\omega$ by functions of the class $W^{r+1}K$.
@article{IM2_1972_6_2_a5,
     author = {N. P. Korneichuk},
     title = {Inequalities for differentiable periodic functions and best approximation of one class of functions by another},
     journal = {Izvestiya. Mathematics },
     pages = {417--428},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_2_a5/}
}
TY  - JOUR
AU  - N. P. Korneichuk
TI  - Inequalities for differentiable periodic functions and best approximation of one class of functions by another
JO  - Izvestiya. Mathematics 
PY  - 1972
SP  - 417
EP  - 428
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1972_6_2_a5/
LA  - en
ID  - IM2_1972_6_2_a5
ER  - 
%0 Journal Article
%A N. P. Korneichuk
%T Inequalities for differentiable periodic functions and best approximation of one class of functions by another
%J Izvestiya. Mathematics 
%D 1972
%P 417-428
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1972_6_2_a5/
%G en
%F IM2_1972_6_2_a5
N. P. Korneichuk. Inequalities for differentiable periodic functions and best approximation of one class of functions by another. Izvestiya. Mathematics , Tome 6 (1972) no. 2, pp. 417-428. http://geodesic.mathdoc.fr/item/IM2_1972_6_2_a5/