Functor categories over a~variety of universal algebras
Izvestiya. Mathematics , Tome 6 (1972) no. 2, pp. 381-394.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the category of functors from a category with finitely many objects to a variety of universal algebras is itself equivalent to a variety of universal algebras. A more detailed examination is made for the case of functors into a category of modules; this leads to the notion of a category ring, and some properties of such rings are established.
@article{IM2_1972_6_2_a3,
     author = {E. G. Shul'geifer},
     title = {Functor categories over a~variety of universal algebras},
     journal = {Izvestiya. Mathematics },
     pages = {381--394},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_2_a3/}
}
TY  - JOUR
AU  - E. G. Shul'geifer
TI  - Functor categories over a~variety of universal algebras
JO  - Izvestiya. Mathematics 
PY  - 1972
SP  - 381
EP  - 394
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1972_6_2_a3/
LA  - en
ID  - IM2_1972_6_2_a3
ER  - 
%0 Journal Article
%A E. G. Shul'geifer
%T Functor categories over a~variety of universal algebras
%J Izvestiya. Mathematics 
%D 1972
%P 381-394
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1972_6_2_a3/
%G en
%F IM2_1972_6_2_a3
E. G. Shul'geifer. Functor categories over a~variety of universal algebras. Izvestiya. Mathematics , Tome 6 (1972) no. 2, pp. 381-394. http://geodesic.mathdoc.fr/item/IM2_1972_6_2_a3/

[1] Fikhtner K., “Mnogoobraziya universalnykh algebr s idealami”, Matem. sb., 75(117) (1968), 445–453

[2] Tsalenko M. S., Shulgeifer E. G., Lektsii po teorii kategorii, MGU im. M. V. Lomonosova, mekh.-mat. fak-t, M., 1970 | MR

[3] Shulgeifer E. G., “Bimnogoobraziya v kategoriyakh”, Sib. matem. zh., 11 (1970), 1362–1389

[4] Morita K., “Category-isomorphism and endomorphism rings of modules”, Trans. Amer. Math. Soc., 103:3 (1962), 451–469 | DOI | MR | Zbl