Functor categories over a variety of universal algebras
Izvestiya. Mathematics, Tome 6 (1972) no. 2, pp. 381-394
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that the category of functors from a category with finitely many objects to a variety of universal algebras is itself equivalent to a variety of universal algebras. A more detailed examination is made for the case of functors into a category of modules; this leads to the notion of a category ring, and some properties of such rings are established.
@article{IM2_1972_6_2_a3,
author = {E. G. Shul'geifer},
title = {Functor categories over a~variety of universal algebras},
journal = {Izvestiya. Mathematics},
pages = {381--394},
year = {1972},
volume = {6},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_2_a3/}
}
E. G. Shul'geifer. Functor categories over a variety of universal algebras. Izvestiya. Mathematics, Tome 6 (1972) no. 2, pp. 381-394. http://geodesic.mathdoc.fr/item/IM2_1972_6_2_a3/
[1] Fikhtner K., “Mnogoobraziya universalnykh algebr s idealami”, Matem. sb., 75(117) (1968), 445–453
[2] Tsalenko M. S., Shulgeifer E. G., Lektsii po teorii kategorii, MGU im. M. V. Lomonosova, mekh.-mat. fak-t, M., 1970 | MR
[3] Shulgeifer E. G., “Bimnogoobraziya v kategoriyakh”, Sib. matem. zh., 11 (1970), 1362–1389
[4] Morita K., “Category-isomorphism and endomorphism rings of modules”, Trans. Amer. Math. Soc., 103:3 (1962), 451–469 | DOI | MR | Zbl