On the stability of the action of an algebraic group on an algebraic variety
Izvestiya. Mathematics , Tome 6 (1972) no. 2, pp. 367-379
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove the following fact: if a connected algebraic group having no rational characters acts regularly on a normal irreducible algebraic variety $X$ with periodic divisor class group $ClX$, then for the orbit $O_x$ of a point $x\in X$ in general position to be closed, it is sufficient that $O_x$ be an affine variety; moreover, if $X$ is affine, this condition is also sufficient.
@article{IM2_1972_6_2_a2,
author = {V. L. Popov},
title = {On the stability of the action of an algebraic group on an algebraic variety},
journal = {Izvestiya. Mathematics },
pages = {367--379},
publisher = {mathdoc},
volume = {6},
number = {2},
year = {1972},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_2_a2/}
}
V. L. Popov. On the stability of the action of an algebraic group on an algebraic variety. Izvestiya. Mathematics , Tome 6 (1972) no. 2, pp. 367-379. http://geodesic.mathdoc.fr/item/IM2_1972_6_2_a2/