The Tate module for algebraic number fields
Izvestiya. Mathematics , Tome 6 (1972) no. 2, pp. 263-321.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this article we examine some hypotheses concerning the structure of the Tate module of an algebraic number field. We also examine the connection between these hypotheses and some problems in the theory of extensions with specific branch points. The proofs of these hypotheses are given for several special cases. Our definition of the Tate module differs somewhat from the one generally accepted.
@article{IM2_1972_6_2_a0,
     author = {L. V. Kuz'min},
     title = {The {Tate} module for algebraic number fields},
     journal = {Izvestiya. Mathematics },
     pages = {263--321},
     publisher = {mathdoc},
     volume = {6},
     number = {2},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_2_a0/}
}
TY  - JOUR
AU  - L. V. Kuz'min
TI  - The Tate module for algebraic number fields
JO  - Izvestiya. Mathematics 
PY  - 1972
SP  - 263
EP  - 321
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1972_6_2_a0/
LA  - en
ID  - IM2_1972_6_2_a0
ER  - 
%0 Journal Article
%A L. V. Kuz'min
%T The Tate module for algebraic number fields
%J Izvestiya. Mathematics 
%D 1972
%P 263-321
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1972_6_2_a0/
%G en
%F IM2_1972_6_2_a0
L. V. Kuz'min. The Tate module for algebraic number fields. Izvestiya. Mathematics , Tome 6 (1972) no. 2, pp. 263-321. http://geodesic.mathdoc.fr/item/IM2_1972_6_2_a0/

[1] Shafarevich I. R., $\zeta$-funktsiya, preprint VTs MGU, M., 1969

[2] Kuzmin L. V., “Gomologii prokonechnykh grupp, multiplikator Shura i teoriya polei klassov”, Izv. AN SSSR. Ser. matem., 33 (1969), 1220–1254 | MR

[3] Brumer A., “Galois groups of extensions of algebraic number fields with given ramification”, Mich. Math. J., 13:1 (1966), 33–40 | DOI | MR | Zbl

[4] Iwasawa K., “On $\Gamma$-extention of algebraic number fields”, Bull. Math. Soc., 65 (1959), 183–226 | DOI | MR | Zbl