On~control of the solution of a stochastic integral equation with degeneration
Izvestiya. Mathematics , Tome 6 (1972) no. 1, pp. 249-262

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to the derivation of Bellman's differential equation in the payoff function $v(x)$ for a broad class of cases (Theorems 1 and 2). We prove that $v(x)$ is the smallest solution of this equation (Theorem 3).
@article{IM2_1972_6_1_a8,
     author = {N. V. Krylov},
     title = {On~control of the solution of a stochastic integral equation with degeneration},
     journal = {Izvestiya. Mathematics },
     pages = {249--262},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a8/}
}
TY  - JOUR
AU  - N. V. Krylov
TI  - On~control of the solution of a stochastic integral equation with degeneration
JO  - Izvestiya. Mathematics 
PY  - 1972
SP  - 249
EP  - 262
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a8/
LA  - en
ID  - IM2_1972_6_1_a8
ER  - 
%0 Journal Article
%A N. V. Krylov
%T On~control of the solution of a stochastic integral equation with degeneration
%J Izvestiya. Mathematics 
%D 1972
%P 249-262
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a8/
%G en
%F IM2_1972_6_1_a8
N. V. Krylov. On~control of the solution of a stochastic integral equation with degeneration. Izvestiya. Mathematics , Tome 6 (1972) no. 1, pp. 249-262. http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a8/