On a uniqueness theorem
Izvestiya. Mathematics, Tome 6 (1972) no. 1, pp. 241-248
Cet article a éte moissonné depuis la source Math-Net.Ru
With an arbitrary solution of an operator equation of infinite order, a series of elementary solutions is associated. It is shown that if all coefficients of this series are zero, then the solution of the equation is identically zero.
@article{IM2_1972_6_1_a7,
author = {Yu. N. Frolov},
title = {On a~uniqueness theorem},
journal = {Izvestiya. Mathematics},
pages = {241--248},
year = {1972},
volume = {6},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a7/}
}
Yu. N. Frolov. On a uniqueness theorem. Izvestiya. Mathematics, Tome 6 (1972) no. 1, pp. 241-248. http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a7/
[1] Carleson L., “On infinite differential equations with constant coefficients. I”, Math. Scandinavica, 1 (1953), 31–38 | MR | Zbl
[2] Leontev A. F., “Ob uravneniyakh beskonechnogo poryadka s analiticheskimi resheniyami”, Matem. zametki, 10:3 (1971), 269–278 | MR
[3] Frolov Yu. N., “O reshenii odnogo funktsionalnogo uravneniya v deistvitelnoi oblasti”, Sib. matem. zh., 12:5 (1971), 1014–1031
[4] Frolov Yu. N., “O reshenii uravneniya beskonechnogo poryadka v obobschennykh proizvodnykh”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, LIXV, 1961, 294–315