On approximation of $l$-smooth functions by rational functions in the integral metric
Izvestiya. Mathematics, Tome 6 (1972) no. 1, pp. 235-240
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper it is proved that, roughly speaking, the rapidity of approximation of $l$-smooth functions of $n$ variables by rational functions that depend on parameters is the same in the integral metric as in the uniform metric.
@article{IM2_1972_6_1_a6,
author = {L. D. Ivanov},
title = {On approximation of $l$-smooth functions by rational functions in the integral metric},
journal = {Izvestiya. Mathematics},
pages = {235--240},
year = {1972},
volume = {6},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a6/}
}
L. D. Ivanov. On approximation of $l$-smooth functions by rational functions in the integral metric. Izvestiya. Mathematics, Tome 6 (1972) no. 1, pp. 235-240. http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a6/
[1] Vitushkin A. G., Otsenka slozhnosti zadachi tabulirovaniya, Fizmatgiz, M., 1959
[2] Shapiro H., “Some negative theorems of approximation theory”, Michigan Math. J., 11 (1964), 211–217 | DOI | MR | Zbl
[3] Lorentz G. G., “Metric entropy and approximation”, Bull. Amer. Math. Soc., 72 (1966), 903–937 | DOI | MR | Zbl
[4] Warren H. E., “Lower bounds for approximation by nonlinear manifolds”, Trans. Amer. Math. Soc., 133:1 (1968), 167–179 | DOI | MR