On approximation of $l$-smooth functions by rational functions in the integral metric
Izvestiya. Mathematics , Tome 6 (1972) no. 1, pp. 235-240.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is proved that, roughly speaking, the rapidity of approximation of $l$-smooth functions of $n$ variables by rational functions that depend on parameters is the same in the integral metric as in the uniform metric.
@article{IM2_1972_6_1_a6,
     author = {L. D. Ivanov},
     title = {On approximation of $l$-smooth functions by rational functions in the integral metric},
     journal = {Izvestiya. Mathematics },
     pages = {235--240},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a6/}
}
TY  - JOUR
AU  - L. D. Ivanov
TI  - On approximation of $l$-smooth functions by rational functions in the integral metric
JO  - Izvestiya. Mathematics 
PY  - 1972
SP  - 235
EP  - 240
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a6/
LA  - en
ID  - IM2_1972_6_1_a6
ER  - 
%0 Journal Article
%A L. D. Ivanov
%T On approximation of $l$-smooth functions by rational functions in the integral metric
%J Izvestiya. Mathematics 
%D 1972
%P 235-240
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a6/
%G en
%F IM2_1972_6_1_a6
L. D. Ivanov. On approximation of $l$-smooth functions by rational functions in the integral metric. Izvestiya. Mathematics , Tome 6 (1972) no. 1, pp. 235-240. http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a6/

[1] Vitushkin A. G., Otsenka slozhnosti zadachi tabulirovaniya, Fizmatgiz, M., 1959

[2] Shapiro H., “Some negative theorems of approximation theory”, Michigan Math. J., 11 (1964), 211–217 | DOI | MR | Zbl

[3] Lorentz G. G., “Metric entropy and approximation”, Bull. Amer. Math. Soc., 72 (1966), 903–937 | DOI | MR | Zbl

[4] Warren H. E., “Lower bounds for approximation by nonlinear manifolds”, Trans. Amer. Math. Soc., 133:1 (1968), 167–179 | DOI | MR