On the reduction to canonical form of a~dynamical system in the neighborhood of a~smooth invariant torus
Izvestiya. Mathematics , Tome 6 (1972) no. 1, pp. 211-234.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an iterative process for determining a transformation that transforms a given dynamical system in the vicinity of a smooth torus to canonical form. Necessary conditions (and also sufficient conditions) for reducibility are given.
@article{IM2_1972_6_1_a5,
     author = {A. M. Samoilenko},
     title = {On the reduction to canonical form of a~dynamical system in the neighborhood of a~smooth invariant torus},
     journal = {Izvestiya. Mathematics },
     pages = {211--234},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a5/}
}
TY  - JOUR
AU  - A. M. Samoilenko
TI  - On the reduction to canonical form of a~dynamical system in the neighborhood of a~smooth invariant torus
JO  - Izvestiya. Mathematics 
PY  - 1972
SP  - 211
EP  - 234
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a5/
LA  - en
ID  - IM2_1972_6_1_a5
ER  - 
%0 Journal Article
%A A. M. Samoilenko
%T On the reduction to canonical form of a~dynamical system in the neighborhood of a~smooth invariant torus
%J Izvestiya. Mathematics 
%D 1972
%P 211-234
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a5/
%G en
%F IM2_1972_6_1_a5
A. M. Samoilenko. On the reduction to canonical form of a~dynamical system in the neighborhood of a~smooth invariant torus. Izvestiya. Mathematics , Tome 6 (1972) no. 1, pp. 211-234. http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a5/

[1] Poincaré A., Sur les propriétes des fonctions défiinies par les équations aux différences partielles, Thése, Paris, 1879

[2] Picard E., Traite d'Analyse, t. III, 1896

[3] Siegel C. L., “Über die Nonrnalform anadytisicher Differentiiialigleiohungen in der Nähe einer Gleichgewichtslösung”, Nachr. Akad. Wiss. Göttingen, Math.-Phys. Kl, 1952 (1952), 21–30 | MR | Zbl

[4] Belaga E. G., “O privodimosti sistemy obyknovennykh differentsialnykh uravnenii v okrestnosti uslovno-periodicheskogo dvizheniya”, Dokl. AN SSSR, 143:2 (1962), 255–258 | MR | Zbl

[5] Mitropolskii Yu. A., “O postroenii obschego resheniya nelineinykh differentsialnykh uravnenii s pomoschyu metoda, obespechivayuschego “uskorennuyu” skhodimost”, Ukr. matem. zh., 16:4 (1964), 475–501

[6] Bryuno A. D., “Formalnye i analiticheskie integraly v osoboi tochke”, Mezhd. kongress matem., Tezisy, sektsiya 6, 1966

[7] Samoilenko A. M., “O privodimosti sistemy obyknovennykh differentsialnykh uravnenii v okrestnosti gladkogo toroidalnogo mnogoobraziya”, Izv. AN SSSR. Ser. matem., 30 (1966), 1047–1072 | Zbl

[8] Bogolyubov N. N., Mitropolskii Yu. A., Samoilenko A. M., Metod uskorennoi skhodimosti v nelineinoi mekhanike, Naukova dumka, Kiev, 1969 | MR

[9] Samoilenko A. M., “O sokhranenii invariantnogo tora pri vozmuschenii”, Izv. AN SSSR. Ser. matem., 34 (1970), 1219–1241 | MR