Parabolic points and zeta-functions of modular curves
Izvestiya. Mathematics , Tome 6 (1972) no. 1, pp. 19-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we obtain explicit formulas for the values at the center of the critical strip of Dirichlet series connected with weight 2 parabolic forms of the group $\Gamma_0(N)$. In particular, these formulas allow us to verify the Birch–Swinnerton-Dyer conjecture on the order of a zero for uniformizable elliptic curves over certain $\Gamma$-extensions. We also give applications to noncommutative reciprocity laws.
@article{IM2_1972_6_1_a1,
     author = {Yu. I. Manin},
     title = {Parabolic points and zeta-functions of modular curves},
     journal = {Izvestiya. Mathematics },
     pages = {19--64},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a1/}
}
TY  - JOUR
AU  - Yu. I. Manin
TI  - Parabolic points and zeta-functions of modular curves
JO  - Izvestiya. Mathematics 
PY  - 1972
SP  - 19
EP  - 64
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a1/
LA  - en
ID  - IM2_1972_6_1_a1
ER  - 
%0 Journal Article
%A Yu. I. Manin
%T Parabolic points and zeta-functions of modular curves
%J Izvestiya. Mathematics 
%D 1972
%P 19-64
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a1/
%G en
%F IM2_1972_6_1_a1
Yu. I. Manin. Parabolic points and zeta-functions of modular curves. Izvestiya. Mathematics , Tome 6 (1972) no. 1, pp. 19-64. http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a1/

[1] Atkin A., Lehner J., “Hecke operators on $\Gamma_0(m)$”, Math. Annalen, 185:2 (1970), 134–160 | DOI | MR | Zbl

[2] Brich B. J., “Diophantine analysis and modular functions”, Algebraic Geometry (Internat. Colloq., Tata Inst. Fund. Res., Bombay, 1968), Oxford Univ. Press, London, 1969, 35–42 | MR

[3] Venkov B. A., Elementarnaya teoriya chisel, ONTI, M., 1937

[4] Sartier P., Groupes formelis, fonctions automorphes et fonctions zeta des courbes elliptiques, preprint, 1970

[5] Eichler M., “Quaternäre quadratische Formen und die Riemannsche Yermutung für die Kongruenzzeta-funktion”, Arch. Math., 5 (1954), 355–366 | DOI | MR | Zbl

[6] Heilbronn H., “On the average length of a class of finite continued fractions”, Number Theory and Analysis (Papers in Honor of Edmund Landau), Plenum, New York, 1969, 87–96 | MR

[7] Lévy P., Théorie de Taddition des variables aléatoires, Paris, 1937

[8] Ligozat G., “Fonctions $L$ des courbes modulaires”, Séminaire Délange–Pisot–Poitou: 1969/70, Secrétariat Math., Paris, 1970, 10 | MR

[9] Manin Yu. I., “Krugovye polya i modulyarnye krivye”, Uspekhi matem. nauk, XXVI:6 (1971), 7–71 | MR

[10] Mazur B., Rational points of abelian varieties with values 'in towers of number fields, preprint, 1965 | MR

[11] Mazur B., Arithmétique des courbes elliptiques sur les corps cyclotomiques (notes de J. F. Boutot), Orsay, 1970

[12] Ogg A., Modular forms and Dirichlet series, Benjamin, New York, 1969 | MR | Zbl

[13] Serre J. P., Abelian $l$-adic representations and elliptic curves, Benjamin, New York, 1968 | MR | Zbl

[14] Shimura G., “A reciprocity law in non-solvabde extensions”, J. reine und angew. Math., 221 (1966), 209–220 | MR | Zbl

[15] Swinnerton-Dyer H. P. F., The conjectures of Birch and Swinnerton-Dyer and of Tate (Proc. Conf. on Local fields), Springer, Berlin, 1967 | MR

[16] Weil A., “Über die Bestimmung Dirichletscher Reine durch Funktionalgleichungen”, Math. Ann., 168 (1967), 149–156 | DOI | MR | Zbl