Parabolic points and zeta-functions of modular curves
Izvestiya. Mathematics , Tome 6 (1972) no. 1, pp. 19-64

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we obtain explicit formulas for the values at the center of the critical strip of Dirichlet series connected with weight 2 parabolic forms of the group $\Gamma_0(N)$. In particular, these formulas allow us to verify the Birch–Swinnerton-Dyer conjecture on the order of a zero for uniformizable elliptic curves over certain $\Gamma$-extensions. We also give applications to noncommutative reciprocity laws.
@article{IM2_1972_6_1_a1,
     author = {Yu. I. Manin},
     title = {Parabolic points and zeta-functions of modular curves},
     journal = {Izvestiya. Mathematics },
     pages = {19--64},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a1/}
}
TY  - JOUR
AU  - Yu. I. Manin
TI  - Parabolic points and zeta-functions of modular curves
JO  - Izvestiya. Mathematics 
PY  - 1972
SP  - 19
EP  - 64
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a1/
LA  - en
ID  - IM2_1972_6_1_a1
ER  - 
%0 Journal Article
%A Yu. I. Manin
%T Parabolic points and zeta-functions of modular curves
%J Izvestiya. Mathematics 
%D 1972
%P 19-64
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a1/
%G en
%F IM2_1972_6_1_a1
Yu. I. Manin. Parabolic points and zeta-functions of modular curves. Izvestiya. Mathematics , Tome 6 (1972) no. 1, pp. 19-64. http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a1/