Sur les formules explicites de th\'eorie des nombres
Izvestiya. Mathematics , Tome 6 (1972) no. 1, pp. 1-17

Voir la notice de l'article provenant de la source Math-Net.Ru

"Explicit formulas" in number theory express the sum of values of a function at the zeros of an $L$-series of an algebraic number field as a sum of local terms corresponding to all norms of this field. For the case of Hecke $L$-series, such formulas were found earlier by the author. In this paper they are derived for Artin–Hecke series corresponding to arbitrary finite-dimensional representations of the group $W_{k,K}$ – the standard extension of the idele class group of a global field $K$ using the Galois group of a finite extension $K/k$. In this connection it turns out that terms corresponding to archimedean and nonarchimedean norms can be written in unique form.
@article{IM2_1972_6_1_a0,
     author = {A. Weil},
     title = {Sur les formules explicites de th\'eorie des nombres},
     journal = {Izvestiya. Mathematics },
     pages = {1--17},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a0/}
}
TY  - JOUR
AU  - A. Weil
TI  - Sur les formules explicites de th\'eorie des nombres
JO  - Izvestiya. Mathematics 
PY  - 1972
SP  - 1
EP  - 17
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a0/
LA  - en
ID  - IM2_1972_6_1_a0
ER  - 
%0 Journal Article
%A A. Weil
%T Sur les formules explicites de th\'eorie des nombres
%J Izvestiya. Mathematics 
%D 1972
%P 1-17
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a0/
%G en
%F IM2_1972_6_1_a0
A. Weil. Sur les formules explicites de th\'eorie des nombres. Izvestiya. Mathematics , Tome 6 (1972) no. 1, pp. 1-17. http://geodesic.mathdoc.fr/item/IM2_1972_6_1_a0/