Characteristic numbers in $U$-theory
Izvestiya. Mathematics, Tome 5 (1971) no. 6, pp. 1365-1385
Cet article a éte moissonné depuis la source Math-Net.Ru
We compute the subgroup of $\Omega_*^U\otimes Q$ consisting of all elements with integral $U$-numbers. Using these results, we obtain a new computation of the group $\mathrm{Ext}^1_{A^U}(\Omega_*^U,\Omega_*^U)$ and a complete answer to the question of Chern numbers of $(U,\mathrm{fr})$-manifolds.
@article{IM2_1971_5_6_a8,
author = {N. V. Panov},
title = {Characteristic numbers in $U$-theory},
journal = {Izvestiya. Mathematics},
pages = {1365--1385},
year = {1971},
volume = {5},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_6_a8/}
}
N. V. Panov. Characteristic numbers in $U$-theory. Izvestiya. Mathematics, Tome 5 (1971) no. 6, pp. 1365-1385. http://geodesic.mathdoc.fr/item/IM2_1971_5_6_a8/
[1] Novikov S. P., “Metody algebraicheskoi topologii s tochki zreniya teorii kobordizmov”, Izv. AN SSSR. Ser. matem., 31 (1967), 855–951 | Zbl
[2] Bukhshtaber V. M., “Kharakter Chzhenya–Dolda v kobordizmakh”, Matem. sb., 83 (1970), 575–595 | Zbl
[3] Stong R., “Relations between characteristic numbers. I”, Topology, 4:3 (1965), 267–282 | DOI | MR
[4] Konner P., Floid E., Gladkie periodicheskie otobrazheniya, Dopolnenie, Mir, M., 1969
[5] Smith L., “On characteristic numbers of almost complex manifolds with framed boundaries”, Topology, 10:3 (1971), 237–256 | DOI | MR | Zbl
[6] Deier E., “Sootnosheniya mezhdu teoriyami kogomologii”, Matematika, 9:2 (1965), 15–18