Homotopy invariants of nonsimply connected manifolds.~III. Higher signatures
Izvestiya. Mathematics , Tome 5 (1971) no. 6, pp. 1325-1364.

Voir la notice de l'article provenant de la source Math-Net.Ru

The homotopy invariance of the higher signatures of nonsimply connected manifolds is proved in this paper. The method of proof is based on the study of absolute invariants of nonsimply connected manifolds similar to algebraic $K$-theory and on the construction of an analog to intersection theory for Poincaré complexes.
@article{IM2_1971_5_6_a7,
     author = {A. S. Mishchenko},
     title = {Homotopy invariants of nonsimply connected {manifolds.~III.} {Higher} signatures},
     journal = {Izvestiya. Mathematics },
     pages = {1325--1364},
     publisher = {mathdoc},
     volume = {5},
     number = {6},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_6_a7/}
}
TY  - JOUR
AU  - A. S. Mishchenko
TI  - Homotopy invariants of nonsimply connected manifolds.~III. Higher signatures
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 1325
EP  - 1364
VL  - 5
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_6_a7/
LA  - en
ID  - IM2_1971_5_6_a7
ER  - 
%0 Journal Article
%A A. S. Mishchenko
%T Homotopy invariants of nonsimply connected manifolds.~III. Higher signatures
%J Izvestiya. Mathematics 
%D 1971
%P 1325-1364
%V 5
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_6_a7/
%G en
%F IM2_1971_5_6_a7
A. S. Mishchenko. Homotopy invariants of nonsimply connected manifolds.~III. Higher signatures. Izvestiya. Mathematics , Tome 5 (1971) no. 6, pp. 1325-1364. http://geodesic.mathdoc.fr/item/IM2_1971_5_6_a7/

[1] Wall C. T. C., “Poincaré complexes. I”, Ann. Math., 86:2 (1967), 213–245 | DOI | MR | Zbl

[2] Kervaire M., “Le theoreme de Bardeu–Mazur–Stallings”, Lecture Notes in Math., 48, 1967, 94 | MR

[3] Novikov S. P., “O mnogoobraziyakh so svobodnoi abelevoi fundamentalnoi gruppoi i ikh primeneniyakh”, Izv. AN SSSR. Ser. matem., 30 (1966), 207–246 | MR | Zbl

[4] Novikov S., “Pontrjagin classes, the fundamental group and some problems of stable algebra”, Memoires Dedices a George de Rham, Zechner Press, 1969, 147–155 | MR

[5] Wall C. T. C., “Surgery of nonsimply connected manifolds”, Ann. Math., 84:2 (1966), 217–276 | DOI | MR | Zbl

[6] Wall C. T. C., Surgery of compact manifolds, preprint, Liverpool Univ., 1968 | MR

[7] Mischenko A. S., “Gomotopicheskie invarianty neodnosvyaznykh mnogoobrazii. II. Prostoi gomotopicheskii tip”, Izv. AN SSSR. Ser. matem., 35:3 (1971), 655–666 | MR | Zbl

[8] Godeman R., Algebraicheskaya topologiya i teoriya puchkov, IL, M., 1961

[9] Shaneson I. L., “Wall's surgery obstructions groups for $G\times Z$ suitable group $G$”, Bull. Amer. Math. Soc., 74:3 (1968), 467–471 | DOI | MR | Zbl

[10] Kasparov G. G., “O gomotopicheskoi invariantnosti ratsionalnykh chisel Pontryagina”, Dokl. AN SSSR, 190:5 (1970), 1022–1025 | MR | Zbl

[11] Mischenko A. S., “Gomotopicheskie invarianty neodnosvyaznykh mnogoobrazii. I. Ratsionalnye invarianty”, Izv. AN SSSR. Ser. matem., 34 (1970), 501–514 | Zbl