Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1971_5_6_a2, author = {V. M. Sitnikov}, title = {Finite groups with 2-closed or $2'$-closed centralizers of involutions}, journal = {Izvestiya. Mathematics }, pages = {1215--1230}, publisher = {mathdoc}, volume = {5}, number = {6}, year = {1971}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_6_a2/} }
V. M. Sitnikov. Finite groups with 2-closed or $2'$-closed centralizers of involutions. Izvestiya. Mathematics , Tome 5 (1971) no. 6, pp. 1215-1230. http://geodesic.mathdoc.fr/item/IM2_1971_5_6_a2/
[1] Kholl M., Teoriya grupp, IL, M., 1962
[2] Carter R. W., “Simple groups and Lie algebras”, J. London Math. Soc., 40:2 (1965), 193–240 | DOI | MR | Zbl
[3] Glauberman G., “Central elements in core-free groups”, J. Algebra, 4:3 (1966), 403–420 | DOI | MR | Zbl
[4] Gorenstein D., Finite groups, Harper and Row, 1968 | MR | Zbl
[5] Gorenstein D., “Finite groups, the centralizers of whose involutions have normal 2-complement”, Canad. J. Math., 21:2 (1969), 335–357 | MR | Zbl
[6] Gorenstein D., Harada K., “A characterisation of Janko's two new simple groups”, J. Fac. Sci. Univ. Tokyo, 21:3 (1970), 331–406 | MR
[7] Higman G., Odd Characterisations of Finite Simple Groups, Lectures, Michigan University, 1968
[8] Janko Z., Thompson J. G., “On finite simple groups whose Sylow 2-subgroups have no normal elementary subgroups of order 8”, Math. Z., 113:5 (1970), 385–397 | DOI | MR | Zbl
[9] Suzuki M., “Finite groups in which centralizers of any element of order 2 is 2-closed,”, Ann. Math., 82:2 (1965), 191–212 | DOI | MR | Zbl
[10] Suzuki M., “On a class of doubly transitive groups”, Ann. Math., 75:1 (1962), 105–145 | DOI | MR | Zbl
[11] Schreier O., van der Waerden B. L., “Die Authomorphismen der projectiven Gruppen”, Hamb. Abh., 6 (1928), 308–322
[12] Taylor D. E., “A characterisation of the group Aut $(PGL (3,4)$”, J. Austral. Math. Soc., 11:2 (1970), 195–206 | DOI | MR | Zbl