$U$-actions of a circle and fixed points
Izvestiya. Mathematics, Tome 5 (1971) no. 5, pp. 1127-1143
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we derive Conner–Floyd equations for fixed points of $U$-actions of a circle.
@article{IM2_1971_5_5_a8,
author = {S. M. Gusein-Zade},
title = {$U$-actions of a~circle and fixed points},
journal = {Izvestiya. Mathematics},
pages = {1127--1143},
year = {1971},
volume = {5},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_5_a8/}
}
S. M. Gusein-Zade. $U$-actions of a circle and fixed points. Izvestiya. Mathematics, Tome 5 (1971) no. 5, pp. 1127-1143. http://geodesic.mathdoc.fr/item/IM2_1971_5_5_a8/
[1] Novikov S. P., “Operatory Adamsa i nepodvizhnye tochki”, Izv. AN SSSR. Ser. matem., 32 (1968), 1245–1263 | MR
[2] Mischenko A. S., “Bordizmy s deistviem gruppy $Z_p$ i nepodvizhnye tochki”, Matem. sb., 80:3 (1969), 307–313 | Zbl
[3] Gusein-Zade S. M., “O deistvii okruzhnosti na mnogoobraziyakh”, prinyata k pechati, Matem. zametki
[4] Kasparov G. G., “Invarianty klassicheskikh linzovykh mnogoobrazii v teorii kobordizmov”, Izv. AN SSSR. Ser. matem., 33 (1969), 735–747 | MR | Zbl
[5] Mischenko A. S., “Mnogoobraziya s deistviem gruppy $Z_p$ i nepodvizhnye tochki”, Matem. zametki, 4:4 (1968), 381–386 | Zbl
[6] Conner P., Floyd E., Maps of odd period, Ann. Math., 84:1 (1966), 132–156 | DOI | MR | Zbl