Exact H\"older estimates for the solutions of the $\bar\partial$-equation
Izvestiya. Mathematics , Tome 5 (1971) no. 5, pp. 1180-1192.

Voir la notice de l'article provenant de la source Math-Net.Ru

The $\bar\partial$-equation with bounded right side in a trictly pseudoconvex domain has a solution which satisfies the Hölder condition with exponent 1/2.
@article{IM2_1971_5_5_a11,
     author = {A. V. Romanov and G. M. Henkin},
     title = {Exact {H\"older} estimates for the solutions of the $\bar\partial$-equation},
     journal = {Izvestiya. Mathematics },
     pages = {1180--1192},
     publisher = {mathdoc},
     volume = {5},
     number = {5},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_5_a11/}
}
TY  - JOUR
AU  - A. V. Romanov
AU  - G. M. Henkin
TI  - Exact H\"older estimates for the solutions of the $\bar\partial$-equation
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 1180
EP  - 1192
VL  - 5
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_5_a11/
LA  - en
ID  - IM2_1971_5_5_a11
ER  - 
%0 Journal Article
%A A. V. Romanov
%A G. M. Henkin
%T Exact H\"older estimates for the solutions of the $\bar\partial$-equation
%J Izvestiya. Mathematics 
%D 1971
%P 1180-1192
%V 5
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_5_a11/
%G en
%F IM2_1971_5_5_a11
A. V. Romanov; G. M. Henkin. Exact H\"older estimates for the solutions of the $\bar\partial$-equation. Izvestiya. Mathematics , Tome 5 (1971) no. 5, pp. 1180-1192. http://geodesic.mathdoc.fr/item/IM2_1971_5_5_a11/

[1] Khenkin G. M., “Ravnomernaya otsenka resheniya $\overline\partial$-zadachi v oblasti Veilya”, Uspekhi matem. nauk, XXVI:3 (1971), 211–212

[2] Kerzman N., “Hölder and $L^p$-estimates for solutions of $\overline\partial u=f$ in strongly pseudoconvex domains, I”, Comm. Pure Appl. Math., 24:3 (1971) ; “II”, Bull. Amer. Math. Soc., 76:4 (1970), 860–865 | DOI | MR | DOI | MR

[3] Khenkin G. M., “Integralnoe predstavlenie funktsii v strogo psevdovypuklykh oblastyakh i prilozheniya k $\overline\partial$-zadache”, Matem. sb., 82:2 (1970), 300–308 | MR | Zbl

[4] Grauert H., Lieb I., Das Ramirersche Integral und die Lösung der Gleichung $\overline\partial f=\alpha$ in Bereich der beschränkten Formen, Rice University Studies, Houston, 1970 | Zbl

[5] Øvrelid N., “Integral representation formulas and $L^p$-estimates for the $\overline\partial$-equation”, Math. Scand., 29 (1971), 137–160 | MR

[6] Lieb I., “Die Caushy–Riemanschen Differentialgleichungen auf strong pseudokonvexen Gebieten. I. Beschrankte Lösungen. II. Stetige Randwerte”, Math. Ann., 190:1 (1970), 6–45 | DOI | MR

[7] Morrey C. B., “The analytic embedding of abstract real-analytic manifolds”, Ann. Math., 68 (1958), 159–201 | DOI | MR | Zbl

[8] Kohn J. J., “Harmonic integrals on strongly pseudoconvex manifolds”, Ann. Math., 78 (1963), 112–148 ; 79 (1964), 450–472 | DOI | MR | Zbl | DOI | MR | Zbl

[9] Kohn J. J., “Boundaries of complex manifolds”, Proc. of the Conf. on Complex Analysis (Minneapolis, 1964), Springer-Verlag, 1965, 81–94 | MR

[10] Hörmander L., “$L^2$-estimates and existence theorems for the $\overline\partial$- operator”, Acta Mathematica, 113:1–2 (1965), 89–152 | DOI | MR | Zbl

[11] Khenkin G. M., “Integralnoe predstavlenie funktsii, golomorfnykh v strogo psevdovypuklykh oblastyakh i nekotorye prilozheniya”, Matem. sb., 78:4 (1969), 611–632 | Zbl

[12] Ramirer de Arellano E., “Ein Divisions problem und Randintegral-darstellungcn in der Komplexen Analysis”, Math. Ann., 184 (1970), 172–187 | DOI | MR

[13] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR