Operator-irreducible symmetric algebras of operators in the $\mathbf\Pi^1$ Pontryagin space
Izvestiya. Mathematics , Tome 5 (1971) no. 5, pp. 1168-1179

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove that operator-irreducible weakly closed algebras (containing the identity) on $\mathbf\Pi^1$ are reflexive, and construct a canonical model of an arbitrary symmetric operator-irreducible algebra on $\mathbf\Pi^1$ with a bounded norm, which is not (spatially) irreducible.
@article{IM2_1971_5_5_a10,
     author = {V. I. Liberzon and V. S. Shul'man},
     title = {Operator-irreducible symmetric algebras of operators in the $\mathbf\Pi^1$ {Pontryagin} space},
     journal = {Izvestiya. Mathematics },
     pages = {1168--1179},
     publisher = {mathdoc},
     volume = {5},
     number = {5},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_5_a10/}
}
TY  - JOUR
AU  - V. I. Liberzon
AU  - V. S. Shul'man
TI  - Operator-irreducible symmetric algebras of operators in the $\mathbf\Pi^1$ Pontryagin space
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 1168
EP  - 1179
VL  - 5
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_5_a10/
LA  - en
ID  - IM2_1971_5_5_a10
ER  - 
%0 Journal Article
%A V. I. Liberzon
%A V. S. Shul'man
%T Operator-irreducible symmetric algebras of operators in the $\mathbf\Pi^1$ Pontryagin space
%J Izvestiya. Mathematics 
%D 1971
%P 1168-1179
%V 5
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_5_a10/
%G en
%F IM2_1971_5_5_a10
V. I. Liberzon; V. S. Shul'man. Operator-irreducible symmetric algebras of operators in the $\mathbf\Pi^1$ Pontryagin space. Izvestiya. Mathematics , Tome 5 (1971) no. 5, pp. 1168-1179. http://geodesic.mathdoc.fr/item/IM2_1971_5_5_a10/