An effective refinement of the exponent in Liouville's theorem
Izvestiya. Mathematics , Tome 5 (1971) no. 5, pp. 985-1002

Voir la notice de l'article provenant de la source Math-Net.Ru

For every algebraic number $\alpha$ of degree $n\geqslant3$ there exist effective positive constants $a$ and $C$ such that for any rational integers $q>0$ and $p$ we have $$ \biggl|\alpha-\frac pq\biggr|>Cq^{a-n}. $$ We also derive an effective boundary of the type $C_1m^{a_1}$ for the solutions of the Diophantine equation $f(x,y)=m$, where $f$ is a form of degree $\geqslant3$.
@article{IM2_1971_5_5_a1,
     author = {N. I. Fel'dman},
     title = {An effective refinement of the exponent in {Liouville's} theorem},
     journal = {Izvestiya. Mathematics },
     pages = {985--1002},
     publisher = {mathdoc},
     volume = {5},
     number = {5},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_5_a1/}
}
TY  - JOUR
AU  - N. I. Fel'dman
TI  - An effective refinement of the exponent in Liouville's theorem
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 985
EP  - 1002
VL  - 5
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_5_a1/
LA  - en
ID  - IM2_1971_5_5_a1
ER  - 
%0 Journal Article
%A N. I. Fel'dman
%T An effective refinement of the exponent in Liouville's theorem
%J Izvestiya. Mathematics 
%D 1971
%P 985-1002
%V 5
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_5_a1/
%G en
%F IM2_1971_5_5_a1
N. I. Fel'dman. An effective refinement of the exponent in Liouville's theorem. Izvestiya. Mathematics , Tome 5 (1971) no. 5, pp. 985-1002. http://geodesic.mathdoc.fr/item/IM2_1971_5_5_a1/