An effective refinement of the exponent in Liouville's theorem
Izvestiya. Mathematics , Tome 5 (1971) no. 5, pp. 985-1002.

Voir la notice de l'article provenant de la source Math-Net.Ru

For every algebraic number $\alpha$ of degree $n\geqslant3$ there exist effective positive constants $a$ and $C$ such that for any rational integers $q>0$ and $p$ we have $$ \biggl|\alpha-\frac pq\biggr|>Cq^{a-n}. $$ We also derive an effective boundary of the type $C_1m^{a_1}$ for the solutions of the Diophantine equation $f(x,y)=m$, where $f$ is a form of degree $\geqslant3$.
@article{IM2_1971_5_5_a1,
     author = {N. I. Fel'dman},
     title = {An effective refinement of the exponent in {Liouville's} theorem},
     journal = {Izvestiya. Mathematics },
     pages = {985--1002},
     publisher = {mathdoc},
     volume = {5},
     number = {5},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_5_a1/}
}
TY  - JOUR
AU  - N. I. Fel'dman
TI  - An effective refinement of the exponent in Liouville's theorem
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 985
EP  - 1002
VL  - 5
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_5_a1/
LA  - en
ID  - IM2_1971_5_5_a1
ER  - 
%0 Journal Article
%A N. I. Fel'dman
%T An effective refinement of the exponent in Liouville's theorem
%J Izvestiya. Mathematics 
%D 1971
%P 985-1002
%V 5
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_5_a1/
%G en
%F IM2_1971_5_5_a1
N. I. Fel'dman. An effective refinement of the exponent in Liouville's theorem. Izvestiya. Mathematics , Tome 5 (1971) no. 5, pp. 985-1002. http://geodesic.mathdoc.fr/item/IM2_1971_5_5_a1/

[1] Liouville J., “Sur des classes trés etendues de quantités dont la valeur n'est ni algébrique, ni même reductible à des irrationelles algebriques”, Compt. Rend. Acad. Sci. (Paris), 18 (1844), 883–885

[2] Thue A., “Bemerkungen über gewisse Näherungsbruehe algebraischer Zahlen”, Norske Vid. Selsk. Skr., 1908, no. 3, 1–34

[3] Thue A., “Über Annäherungswerte algebraischer Zahlen”, J. reine und angew. Math., 135 (1909), 284–305 | Zbl

[4] Siegel C. L., “Approximation algebraischer Zahlen”, Math. Z., 10 (1921), 173–213 | DOI | MR | Zbl

[5] Dyson F. J., “The approximation to algebraic numbers by rationals”, Acta Math., 79 (1947), 225–240 | DOI | MR | Zbl

[6] Gelfond A. O., “Approksimatsiya algebraicheskikh chisel i ikh logarifmov”, Vestn. Mosk. un-ta, 9 (1948), 3–25

[7] Roth K. F., “Rational approximation to algebraic numbers”, Mathematika, 2 (1955), 1–20 | MR | Zbl

[8] Baker A., “Rational approximations to certain algebraic numbers”, Proc. London Math. Soc. (3), 14 (1964), 385–398 | DOI | MR | Zbl

[9] Baker A., “Rational approximations to $\sqrt[3]{2}$ and other algebraic numbers”, Quart. J. Math., 15:60 (1964), 375–383 | DOI | MR | Zbl

[10] Gelfond A. O., “Sur le septiéme probléme de Hilbert”, Izv. AN SSSR. Ser. matem., 1934, no. 7, 623–630

[11] Gelfond A. O., Transtsendentnye i algebraicheskie chisla, Gostekhizdat, M., 1952

[12] Baker A., “Linear forms in the logarithms of algebraic numbers. I”, Mathematika, 13 (1966), 204–216 ; “II”, 14 (1967), 102–107 ; “III”, 14 (1967), 220–228 ; “IV”, 15 (1968), 204–216 | MR | Zbl | Zbl | Zbl | MR | Zbl

[13] Baker A., “Contributions to the theory of Diophantine equations. I. On the representation of integers by binary forms”, Philos. Trans. Royal Soc. London (A), 263:1139 (1968), 173–191 | DOI | MR | Zbl

[14] Feldman H. I., “Odno neravenstvo dlya lineinoi formy ot logarifmov algebraicheskikh chisel”, Matem. zametki, 5:6 (1969), 681–689

[15] Feldman N. I., “Utochnenie dvukh effektivnykh neravenstv A. Beikera”, Matem. zametki, 6:6 (1969), 767–769

[16] Sprindzhuk V. G., “Novoe primenenie $p$-adicheskogo analiza k predstavleniyam chisel binarnymi formami”, Izv. AN SSSR. Ser. matem., 34 (1970), 1038–1063 | Zbl

[17] Feldman N. I., “Otsenka lineinoi formy ot logarifmov algebraicheskikh chisel”, Matem. sb., 76(118) (1968), 304–319 | MR | Zbl

[18] Feldman N. I., “Approksimatsiya nekotorykh transtsendentnykh chisel”, Izv. AN SSSR. Ser. matem., 15 (1951), 153–176

[19] Feldman N. I., “Uluchshenie otsenki lineinoi formy ot logarifmov algebraicheskikh chisel”, Matem. sb., 77(119):3 (1968), 423–436 | MR | Zbl