An effective refinement of the exponent in Liouville's theorem
Izvestiya. Mathematics , Tome 5 (1971) no. 5, pp. 985-1002
Voir la notice de l'article provenant de la source Math-Net.Ru
For every algebraic number $\alpha$ of degree $n\geqslant3$ there exist effective positive constants $a$ and $C$ such that for any rational integers $q>0$ and $p$ we have
$$
\biggl|\alpha-\frac pq\biggr|>Cq^{a-n}.
$$
We also derive an effective boundary of the type $C_1m^{a_1}$ for the solutions of the Diophantine equation $f(x,y)=m$, where $f$ is a form of degree $\geqslant3$.
@article{IM2_1971_5_5_a1,
author = {N. I. Fel'dman},
title = {An effective refinement of the exponent in {Liouville's} theorem},
journal = {Izvestiya. Mathematics },
pages = {985--1002},
publisher = {mathdoc},
volume = {5},
number = {5},
year = {1971},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_5_a1/}
}
N. I. Fel'dman. An effective refinement of the exponent in Liouville's theorem. Izvestiya. Mathematics , Tome 5 (1971) no. 5, pp. 985-1002. http://geodesic.mathdoc.fr/item/IM2_1971_5_5_a1/