Approximation of functions by algebraic polynomials in the $L_p$ metric
Izvestiya. Mathematics , Tome 5 (1971) no. 4, pp. 889-914

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a new method of approximation of nonperiodic functions by algebraic polynomials. In particular, by this method we establish necessary and sufficient conditions for a function on the interval $[-1,1]$ to satisfy Hölder's condition in the $L_p$ metric.
@article{IM2_1971_5_4_a8,
     author = {V. P. Motornyi},
     title = {Approximation of functions by algebraic polynomials in the $L_p$ metric},
     journal = {Izvestiya. Mathematics },
     pages = {889--914},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a8/}
}
TY  - JOUR
AU  - V. P. Motornyi
TI  - Approximation of functions by algebraic polynomials in the $L_p$ metric
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 889
EP  - 914
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a8/
LA  - en
ID  - IM2_1971_5_4_a8
ER  - 
%0 Journal Article
%A V. P. Motornyi
%T Approximation of functions by algebraic polynomials in the $L_p$ metric
%J Izvestiya. Mathematics 
%D 1971
%P 889-914
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a8/
%G en
%F IM2_1971_5_4_a8
V. P. Motornyi. Approximation of functions by algebraic polynomials in the $L_p$ metric. Izvestiya. Mathematics , Tome 5 (1971) no. 4, pp. 889-914. http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a8/