Approximation of functions by algebraic polynomials in the $L_p$ metric
Izvestiya. Mathematics , Tome 5 (1971) no. 4, pp. 889-914
Voir la notice de l'article provenant de la source Math-Net.Ru
We introduce a new method of approximation of nonperiodic functions by algebraic polynomials. In particular, by this method we establish necessary and sufficient conditions for a function on the interval $[-1,1]$ to satisfy Hölder's condition in the $L_p$ metric.
@article{IM2_1971_5_4_a8,
author = {V. P. Motornyi},
title = {Approximation of functions by algebraic polynomials in the $L_p$ metric},
journal = {Izvestiya. Mathematics },
pages = {889--914},
publisher = {mathdoc},
volume = {5},
number = {4},
year = {1971},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a8/}
}
V. P. Motornyi. Approximation of functions by algebraic polynomials in the $L_p$ metric. Izvestiya. Mathematics , Tome 5 (1971) no. 4, pp. 889-914. http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a8/