Approximation of functions by algebraic polynomials in the $L_p$ metric
Izvestiya. Mathematics , Tome 5 (1971) no. 4, pp. 889-914.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a new method of approximation of nonperiodic functions by algebraic polynomials. In particular, by this method we establish necessary and sufficient conditions for a function on the interval $[-1,1]$ to satisfy Hölder's condition in the $L_p$ metric.
@article{IM2_1971_5_4_a8,
     author = {V. P. Motornyi},
     title = {Approximation of functions by algebraic polynomials in the $L_p$ metric},
     journal = {Izvestiya. Mathematics },
     pages = {889--914},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a8/}
}
TY  - JOUR
AU  - V. P. Motornyi
TI  - Approximation of functions by algebraic polynomials in the $L_p$ metric
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 889
EP  - 914
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a8/
LA  - en
ID  - IM2_1971_5_4_a8
ER  - 
%0 Journal Article
%A V. P. Motornyi
%T Approximation of functions by algebraic polynomials in the $L_p$ metric
%J Izvestiya. Mathematics 
%D 1971
%P 889-914
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a8/
%G en
%F IM2_1971_5_4_a8
V. P. Motornyi. Approximation of functions by algebraic polynomials in the $L_p$ metric. Izvestiya. Mathematics , Tome 5 (1971) no. 4, pp. 889-914. http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a8/

[1] Agakhanov S. A., Natanson G. I., “Priblizhenie funktsii summami Fure–Yakobi”, Dokl. AN SSSR, 166:1 (1966), 9–10 | Zbl

[2] Bari N. K., Trigonometricheskie ryady, Fizmatgiz, M, 1961 | MR

[3] Brudnyi Yu. A., “Obobschenie odnoi teoremy A. F. Timana”, Dokl. AN SSSR, 148:6 (1963), 1237–1240 | MR | Zbl

[4] Dzyadyk V. K., “O konstruktivnoi kharakteristike funktsii, udovletvoryayuschikh usloviyu $\operatorname{Lip}\alpha$ $(0\alpha1)$ na konechnom otrezke veschestvennoi osi”, Izv. AN SSSR. Ser. matem., 20 (1956), 623–642 | MR

[5] Dzyadyk V. K., “O prodolzhenii funktsii, udovletvoryayuschikh usloviyu Lipshitsa v metrike $L_p$”, Matem. sb., 40(82) (1956), 239–242 | MR

[6] Zigmund A., Trigonometricheskie ryady., Mir, M., 1965 | MR

[7] Lebed G. K., “Neravenstva dlya mnogochlenov i ikh proizvodnykh”, Dokl. AN SSSR, 117:4 (1957), 570–572 | MR

[8] Lebed G. K., “Nekotorye voprosy priblizheniya funktsii odnoi peremennoi algebraicheskimi mnogochlenami”, Dokl. AN SSSR, 118:2 (1958), 239–242 | MR | Zbl

[9] Motornyi V. P., “Nekotorye voprosy priblizheniya funktsii algebraicheskimi mnogochlenami v integralnoi metrike”, Dokl. AN SSSR, 172:3 (1967)), 537–540 | MR | Zbl

[10] Motornyi V. P., Priblizhenie funktsii algebraicheskimi mnogochlenami v metrike $L_p$, Dissertatsiya, Dnepropetrovsk, 1967

[11] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Gostekhizdat, M., 1957 | MR

[12] Nikolskii S. M., “O nailuchshem priblizhenii mnogochlenami funktsii, udovletvoryayuschikh usloviyu Lipshitsa”, Izv. AN SSSR. Ser. matem., 10 (1946), 295–322 | MR | Zbl

[13] Nikolskii S. M., RZhMat., 1957, 4696

[14] Pollard H., “The mean convergence of orthogonal series”, Duke Math. J., 16:1 (1949), 189–191 | DOI | MR | Zbl

[15] Potapov M. K., “O teoremakh tipa Dzheksona v metrike $L_p$”, Dokl. AN SSSR, 111:6 (1956), 1185–1188 | MR | Zbl

[16] Potapov M. K., Nekotorye voprosy nailuchshego priblizheniya v metrike $L_p$, Dissertatsiya, M., 1956 | Zbl

[17] Potapov M. K., “O priblizhenii neperiodicheskikh funktsii algebraicheskimi mnogochlenami”, Vestn. Mosk. un-ta, 1960, no. 4, 14–25 | MR | Zbl

[18] Potapov M. K., O priblizhenii algebraicheskimi polinomami v metrike $L_p$, Issledovaniya po sovremennym problemam konstruktivnoi teorii funktsii, Fizmatgiz, M., 1961

[19] Suetin P. K., “O predstavlenii nepreryvnykh i differentsiruemykh funktsii ryadami Fure po mnogochlenam Lezhandra”, Dokl. AN SSSR, 158:6 (1964), 2175–2177 | MR

[20] Timan A. F., “Priblizhenie funktsii, udovletvoryayuschikh usloviyu Lipshitsa, obyknovennymi mnogochlenami”, Dokl. AN SSSR, 77:6 (1951), 969–972 | MR | Zbl

[21] Timan A. F., “Usilenie teoremy Dzheksona o nailuchshem priblizhenii nepreryvnykh funktsii mnogochlenami na konechnom otrezke veschestvennoi osi”, Dokl. AN SSSR, 78:1 (1951), 17–20 | MR | Zbl

[22] Timan A. F., “Obratnye teoremy konstruktivnoi teorii funktsii, zadannykh na konechnom otrezke veschestvennoi osi”, Dokl. AN SSSR, 116:5 (1957), 762–765 | MR | Zbl

[23] Hardy G. H., Littlewood I. E., “Some properties of fractional integral”, Math. Z., 28 (1928), 566–606 | DOI | MR

[24] Ulyanov P. L., “Vlozhenie nekotorykh klassov funktsii $H^\omega_p$”, Izv. AN SSSR. Ser. matem., 32 (1968), 649–686