Exponentials in Lie algebras of characteristic~$p$
Izvestiya. Mathematics , Tome 5 (1971) no. 4, pp. 777-803.

Voir la notice de l'article provenant de la source Math-Net.Ru

The relationship between the structure of a simple Lie algebra of finite characteristic and the structure of the group of its automorphisms is investigated. The results obtained are used to classify simple Lie algebras of characteristic $p>5$ for which the largest reduced subgroup in the scheme of automorphisms is a maximal subscheme. An analogous classification theorem is proved for “simple” group schemes, i.e. schemes every normal divisor of which lying in the reduced subscheme is the kernel of some purely nonseparable isogeny. For characteristics 2 and 3, families of counterexamples are constructed to all results obtained for $p>5$.
@article{IM2_1971_5_4_a3,
     author = {B. Yu. Weisfeiler and V. G. Kac},
     title = {Exponentials in {Lie} algebras of characteristic~$p$},
     journal = {Izvestiya. Mathematics },
     pages = {777--803},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a3/}
}
TY  - JOUR
AU  - B. Yu. Weisfeiler
AU  - V. G. Kac
TI  - Exponentials in Lie algebras of characteristic~$p$
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 777
EP  - 803
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a3/
LA  - en
ID  - IM2_1971_5_4_a3
ER  - 
%0 Journal Article
%A B. Yu. Weisfeiler
%A V. G. Kac
%T Exponentials in Lie algebras of characteristic~$p$
%J Izvestiya. Mathematics 
%D 1971
%P 777-803
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a3/
%G en
%F IM2_1971_5_4_a3
B. Yu. Weisfeiler; V. G. Kac. Exponentials in Lie algebras of characteristic~$p$. Izvestiya. Mathematics , Tome 5 (1971) no. 4, pp. 777-803. http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a3/

[1] Veisfeiler B. Yu., “Beskonechnomernye filtrovannye algebry Li i ikh svyaz s graduirovannymi algebrami Li”, Funkts. analiz i ego prilozheniya, 2:1 (1968), 94–95 | MR | Zbl

[2] Dzhekobson N., Algebry Li, Mir, M., 1964 | MR

[3] Kats V. G., “Prostye neprovodimye graduirovannye algebry Li konechnogo rosta”, Izv. AN SSSR. Ser. matem., 32 (1968), 1323–1367 | Zbl

[4] Kats V. G., “O klassifikatsii prostykh algebr Li nad polem s nenulevoi kharakteristikoi”, Izv. AN SSSR. Ser. matem., 34 (1970), 385–408 | Zbl

[5] Borel A., Springer T. A., “Rationality properties of linear algebraic groups. II”, Tohoku Math. J., 20:4 (1968), 443–497 | DOI | MR | Zbl

[6] Chevalley C., Classifications des groupes Lie algebriques, Paris, 1958

[7] Demazure M., Grothendieck A., Schemas en groupes, IHES, 1964

[8] Frank M., “Two new classes of simple Lie algebras”, Trans. Amer. Math. Soc., 112:3 (1964), 456–483 | DOI | MR

[9] Humphreys J. E., “Existence of Levi factors in certain algebraic groups”, Pacific J. Math., 23:3 (1967), 543–546 | MR | Zbl

[10] Jacobson N., “Classes of restricted Lie algebras of characteristic $p$. II”, Duke Math. J., 10 (1943), 107–121 | DOI | MR | Zbl

[11] Seligman G. B., Modular Lie algebras, Springer-Verlag, Berlin, 1967 | MR | Zbl

[12] Steinberg R., “Génerateurs, rélations et revétements de groupes algébriques”, Colloq. Théorie des Groupes Algébriques (Bruxelles), Librairie Universitaire, Louvain, 1962, 113–128 | MR

[13] Steinberg R., “Automorphisms of classical Lie algebras”, Pacific J. Math., 11:3 (1961), 1119–1129 | MR | Zbl

[14] Tits J., “Classification of algebraic semi-simple groups”, Proc. Symp. in pure Math., 9 (1965), 33–62 | MR

[15] Steinberg R., “Representations of algebraic groups”, Nagoya Math. J., 22 (1963), 33–56 | MR | Zbl

[16] Kostrikin A. I., “Parametricheskoe semeistvo prostykh algebr Li”, Izv. AN SSSR. Ser. matem., 34 (1970), 744–756 | MR | Zbl