Exponentials in Lie algebras of characteristic~$p$
Izvestiya. Mathematics , Tome 5 (1971) no. 4, pp. 777-803

Voir la notice de l'article provenant de la source Math-Net.Ru

The relationship between the structure of a simple Lie algebra of finite characteristic and the structure of the group of its automorphisms is investigated. The results obtained are used to classify simple Lie algebras of characteristic $p>5$ for which the largest reduced subgroup in the scheme of automorphisms is a maximal subscheme. An analogous classification theorem is proved for “simple” group schemes, i.e. schemes every normal divisor of which lying in the reduced subscheme is the kernel of some purely nonseparable isogeny. For characteristics 2 and 3, families of counterexamples are constructed to all results obtained for $p>5$.
@article{IM2_1971_5_4_a3,
     author = {B. Yu. Weisfeiler and V. G. Kac},
     title = {Exponentials in {Lie} algebras of characteristic~$p$},
     journal = {Izvestiya. Mathematics },
     pages = {777--803},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a3/}
}
TY  - JOUR
AU  - B. Yu. Weisfeiler
AU  - V. G. Kac
TI  - Exponentials in Lie algebras of characteristic~$p$
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 777
EP  - 803
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a3/
LA  - en
ID  - IM2_1971_5_4_a3
ER  - 
%0 Journal Article
%A B. Yu. Weisfeiler
%A V. G. Kac
%T Exponentials in Lie algebras of characteristic~$p$
%J Izvestiya. Mathematics 
%D 1971
%P 777-803
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a3/
%G en
%F IM2_1971_5_4_a3
B. Yu. Weisfeiler; V. G. Kac. Exponentials in Lie algebras of characteristic~$p$. Izvestiya. Mathematics , Tome 5 (1971) no. 4, pp. 777-803. http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a3/