Integral points on curves of genus $p>1$
Izvestiya. Mathematics, Tome 5 (1971) no. 4, pp. 770-776
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper we disprove a conjecture of C. L. Siegel on the uniform boundedness of the number of integral points on hyperelliptic curves of given genus and defined over a function field.
@article{IM2_1971_5_4_a2,
author = {A. I. Lapin},
title = {Integral points on curves of genus~$p>1$},
journal = {Izvestiya. Mathematics},
pages = {770--776},
year = {1971},
volume = {5},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a2/}
}
A. I. Lapin. Integral points on curves of genus $p>1$. Izvestiya. Mathematics, Tome 5 (1971) no. 4, pp. 770-776. http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a2/
[1] Siegel C. L., “Über einige Anwendungen Diophantischer Approximationen”, Abh. Preuss. Ak. Wiss. Phys. Math., 1929, 41–69
[2] Manin Yu. I., “Ratsionalnye tochki algebraicheskikh krivykh nad funktsionalnymi polyami”, Izv. AN SSSR. Ser. matem., 27 (1963), 1395–1440 | MR
[3] Lapin A. I., “O ratsionalnykh tochkakh ellipticheskoi krivoi”, Izv. AN SSSR. Ser. matem, 29 (1965), 701–716 | MR | Zbl