Integral points on curves of genus~$p>1$
Izvestiya. Mathematics , Tome 5 (1971) no. 4, pp. 770-776

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we disprove a conjecture of C. L. Siegel on the uniform boundedness of the number of integral points on hyperelliptic curves of given genus and defined over a function field.
@article{IM2_1971_5_4_a2,
     author = {A. I. Lapin},
     title = {Integral points on curves of genus~$p>1$},
     journal = {Izvestiya. Mathematics },
     pages = {770--776},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a2/}
}
TY  - JOUR
AU  - A. I. Lapin
TI  - Integral points on curves of genus~$p>1$
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 770
EP  - 776
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a2/
LA  - en
ID  - IM2_1971_5_4_a2
ER  - 
%0 Journal Article
%A A. I. Lapin
%T Integral points on curves of genus~$p>1$
%J Izvestiya. Mathematics 
%D 1971
%P 770-776
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a2/
%G en
%F IM2_1971_5_4_a2
A. I. Lapin. Integral points on curves of genus~$p>1$. Izvestiya. Mathematics , Tome 5 (1971) no. 4, pp. 770-776. http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a2/