Integral points on curves of genus~$p>1$
Izvestiya. Mathematics , Tome 5 (1971) no. 4, pp. 770-776
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we disprove a conjecture of C. L. Siegel on the uniform boundedness of the number of integral points on hyperelliptic curves of given genus and defined over a function field.
@article{IM2_1971_5_4_a2,
author = {A. I. Lapin},
title = {Integral points on curves of genus~$p>1$},
journal = {Izvestiya. Mathematics },
pages = {770--776},
publisher = {mathdoc},
volume = {5},
number = {4},
year = {1971},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a2/}
}
A. I. Lapin. Integral points on curves of genus~$p>1$. Izvestiya. Mathematics , Tome 5 (1971) no. 4, pp. 770-776. http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a2/