On correct solvability of a~boundary value problem in an infinite slab for linear equations with constant coefficients
Izvestiya. Mathematics , Tome 5 (1971) no. 4, pp. 935-953

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions depending on the properties of the polynomials $P(s)$ and $Q(s)$ are found for the correct solvability of the boundary value problem \begin{gather*} \frac{\partial^2u(x,t)}{\partial t^2}+P\left(\frac\partial{\partial x}\right)\frac{\partial u(x,t)}{\partial t}+Q\left(\frac\partial{\partial x}\right)u(x,t)=0,\\ u(x,0)=u_0(x),\qquad u(x,T)=u_T(x) \end{gather*} ($x\in R_m$, $t\in[0,T]$; $P(s)$ and $Q(s)$ are polynomials in $s_1,\dots,s_m$ with constant coefficients) in various classes of functions.
@article{IM2_1971_5_4_a10,
     author = {V. M. Borok},
     title = {On correct solvability of a~boundary value problem in an infinite slab for linear equations with constant coefficients},
     journal = {Izvestiya. Mathematics },
     pages = {935--953},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a10/}
}
TY  - JOUR
AU  - V. M. Borok
TI  - On correct solvability of a~boundary value problem in an infinite slab for linear equations with constant coefficients
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 935
EP  - 953
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a10/
LA  - en
ID  - IM2_1971_5_4_a10
ER  - 
%0 Journal Article
%A V. M. Borok
%T On correct solvability of a~boundary value problem in an infinite slab for linear equations with constant coefficients
%J Izvestiya. Mathematics 
%D 1971
%P 935-953
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a10/
%G en
%F IM2_1971_5_4_a10
V. M. Borok. On correct solvability of a~boundary value problem in an infinite slab for linear equations with constant coefficients. Izvestiya. Mathematics , Tome 5 (1971) no. 4, pp. 935-953. http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a10/