On correct solvability of a~boundary value problem in an infinite slab for linear equations with constant coefficients
Izvestiya. Mathematics , Tome 5 (1971) no. 4, pp. 935-953.

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions depending on the properties of the polynomials $P(s)$ and $Q(s)$ are found for the correct solvability of the boundary value problem \begin{gather*} \frac{\partial^2u(x,t)}{\partial t^2}+P\left(\frac\partial{\partial x}\right)\frac{\partial u(x,t)}{\partial t}+Q\left(\frac\partial{\partial x}\right)u(x,t)=0,\\ u(x,0)=u_0(x),\qquad u(x,T)=u_T(x) \end{gather*} ($x\in R_m$, $t\in[0,T]$; $P(s)$ and $Q(s)$ are polynomials in $s_1,\dots,s_m$ with constant coefficients) in various classes of functions.
@article{IM2_1971_5_4_a10,
     author = {V. M. Borok},
     title = {On correct solvability of a~boundary value problem in an infinite slab for linear equations with constant coefficients},
     journal = {Izvestiya. Mathematics },
     pages = {935--953},
     publisher = {mathdoc},
     volume = {5},
     number = {4},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a10/}
}
TY  - JOUR
AU  - V. M. Borok
TI  - On correct solvability of a~boundary value problem in an infinite slab for linear equations with constant coefficients
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 935
EP  - 953
VL  - 5
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a10/
LA  - en
ID  - IM2_1971_5_4_a10
ER  - 
%0 Journal Article
%A V. M. Borok
%T On correct solvability of a~boundary value problem in an infinite slab for linear equations with constant coefficients
%J Izvestiya. Mathematics 
%D 1971
%P 935-953
%V 5
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a10/
%G en
%F IM2_1971_5_4_a10
V. M. Borok. On correct solvability of a~boundary value problem in an infinite slab for linear equations with constant coefficients. Izvestiya. Mathematics , Tome 5 (1971) no. 4, pp. 935-953. http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a10/

[1] Borok V. M., “Klassy edinstvennosti resheniya kraevoi zadachi v beskonechnom sloe dlya sistem lineinykh uravnenii”, Matem. sb., 79(121):2 (1969), 293–304 | MR | Zbl

[2] Borok V. M., “Korrektno razreshimye kraevye zadachi v beskonechnom sloe dlya sistem lineinykh uravnenii v chastnykh proizvodnykh”, Izv. AN SSSR. Ser. matem., 35:1 (1971), 185–201 | MR | Zbl

[3] Tikhonov A. N., Samarskii A. A., Uravneniya matematicheskoi fiziki, M., L., 1956

[4] Krein S. G., Laptev G. I., “Granichnye zadachi dlya differentsialnykh uravnenii vtorogo poryadka v banakhovom prostranstve. I”, Differentsialnye uravneniya, II:2–3 (1966), 382–390 | MR

[5] Borok V. M., “Klassy edinstvennosti resheniya kraevoi zadachi v beskonechnom sloe”, Dokl. AN SSSR, 183:5 (1968), 995–998 | MR | Zbl

[6] Borok V. M., “Klassy korrektnoi razreshimosti kraevoi zadachi v beskonechnom sloe”, Dokl. AN SSSR, 183:6 (1968), 1239–1242 | MR | Zbl

[7] Borok V. M., “Privedenie lineinoi sistemy uravnenii v chastnykh proizvodnykh s postoyannymi koeffitsientami v sisteme normalnogo tipa”, Dokl. AN SSSR, 115:1 (1957), 13–16 | MR | Zbl

[8] Seidenberg A., “A new decision method for elementary algebra”, Ann. Math.(2), 60:2 (1954), 365–374 | DOI | MR | Zbl

[9] Khermander L., “O delenii obobschennykh funktsii na polinomy”, Matematika, 3:5 (1959), 117–131

[10] Gorin E. A., “Ob asimptoticheskikh svoistvakh mnogochlenov i algebraicheskikh funktsii ot neskolkikh peremennykh”, Uspekhi matem. nauk, XVI:1(97) (1961), 91–118 | MR

[11] Chebotarev N. G., Teoriya algebraicheskikh funktsii, M., L., 1948

[12] Borok V. M., “Ob odnom kharakteristicheskom svoistve parabolicheskikh sistem”, Dokl. AN SSSR, 110:6 (1956), 903–906 | MR | Zbl