On correct solvability of a~boundary value problem in an infinite slab for linear equations with constant coefficients
Izvestiya. Mathematics , Tome 5 (1971) no. 4, pp. 935-953
Voir la notice de l'article provenant de la source Math-Net.Ru
Conditions depending on the properties of the polynomials $P(s)$ and $Q(s)$ are found for the correct solvability of the boundary value problem
\begin{gather*}
\frac{\partial^2u(x,t)}{\partial t^2}+P\left(\frac\partial{\partial x}\right)\frac{\partial u(x,t)}{\partial t}+Q\left(\frac\partial{\partial x}\right)u(x,t)=0,\\
u(x,0)=u_0(x),\qquad u(x,T)=u_T(x)
\end{gather*}
($x\in R_m$, $t\in[0,T]$; $P(s)$ and $Q(s)$ are polynomials in $s_1,\dots,s_m$ with constant coefficients) in various classes of functions.
@article{IM2_1971_5_4_a10,
author = {V. M. Borok},
title = {On correct solvability of a~boundary value problem in an infinite slab for linear equations with constant coefficients},
journal = {Izvestiya. Mathematics },
pages = {935--953},
publisher = {mathdoc},
volume = {5},
number = {4},
year = {1971},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a10/}
}
TY - JOUR AU - V. M. Borok TI - On correct solvability of a~boundary value problem in an infinite slab for linear equations with constant coefficients JO - Izvestiya. Mathematics PY - 1971 SP - 935 EP - 953 VL - 5 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a10/ LA - en ID - IM2_1971_5_4_a10 ER -
%0 Journal Article %A V. M. Borok %T On correct solvability of a~boundary value problem in an infinite slab for linear equations with constant coefficients %J Izvestiya. Mathematics %D 1971 %P 935-953 %V 5 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a10/ %G en %F IM2_1971_5_4_a10
V. M. Borok. On correct solvability of a~boundary value problem in an infinite slab for linear equations with constant coefficients. Izvestiya. Mathematics , Tome 5 (1971) no. 4, pp. 935-953. http://geodesic.mathdoc.fr/item/IM2_1971_5_4_a10/