Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IM2_1971_5_3_a8, author = {A. S. Mishchenko}, title = {Homotopy invariants of nonsimply connected {manifolds.~II:} {Simple} homotopy type}, journal = {Izvestiya. Mathematics }, pages = {668--679}, publisher = {mathdoc}, volume = {5}, number = {3}, year = {1971}, language = {en}, url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a8/} }
A. S. Mishchenko. Homotopy invariants of nonsimply connected manifolds.~II: Simple homotopy type. Izvestiya. Mathematics , Tome 5 (1971) no. 3, pp. 668-679. http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a8/
[1] Mischenko A. S., “Gomotopicheskie invarianty neodnosvyaznykh mnogoobrazii. I. Ratsionalnye invarianty”, Izv. AN SSSR. Ser. matem., 34 (1970), 501–514 | Zbl
[2] Novikov S. P., Doklad na Mezhdunarodnom kongresse matematikov, M., 1966
[3] Farrell F. T., Hsiang W. C., “A geometric interpretation of the Künneth formula for algebraic $K$-theory”, Bull. Amer. Math. Soc., 74:3 (1968), 548–553 | DOI | MR | Zbl
[4] Kasparov G. G., “O gomotopicheskoi invariantnosti ratsionalnykh chisel Pontryagina”, Dokl. AN SSSR, 190:5 (1970), 1022–1025 | MR | Zbl
[5] Wall C. T. C., Surgery of compact manifolds, preprint, 1968 | MR
[6] Bass H., “$K$-theory and stable algebra”, Publ. Math. Paris, 1964, no. 22, 5–60 | MR | Zbl
[7] Shaneson I. L., “Wall's surgery obstruction groups for $G\times Z$ for suitable group $G$”, Bull. Amer. Math. Soc., 74:3 (1968), 467–471 | DOI | MR | Zbl