Homotopy invariants of nonsimply connected manifolds.~II: Simple homotopy type
Izvestiya. Mathematics , Tome 5 (1971) no. 3, pp. 668-679.

Voir la notice de l'article provenant de la source Math-Net.Ru

The relation between the surgery obstruction group for a nonsimply connected manifold up to homotopy type and the surgery obstruction group up to simple homotopy equivalence is investigated.
@article{IM2_1971_5_3_a8,
     author = {A. S. Mishchenko},
     title = {Homotopy invariants of nonsimply connected {manifolds.~II:} {Simple} homotopy type},
     journal = {Izvestiya. Mathematics },
     pages = {668--679},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a8/}
}
TY  - JOUR
AU  - A. S. Mishchenko
TI  - Homotopy invariants of nonsimply connected manifolds.~II: Simple homotopy type
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 668
EP  - 679
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a8/
LA  - en
ID  - IM2_1971_5_3_a8
ER  - 
%0 Journal Article
%A A. S. Mishchenko
%T Homotopy invariants of nonsimply connected manifolds.~II: Simple homotopy type
%J Izvestiya. Mathematics 
%D 1971
%P 668-679
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a8/
%G en
%F IM2_1971_5_3_a8
A. S. Mishchenko. Homotopy invariants of nonsimply connected manifolds.~II: Simple homotopy type. Izvestiya. Mathematics , Tome 5 (1971) no. 3, pp. 668-679. http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a8/

[1] Mischenko A. S., “Gomotopicheskie invarianty neodnosvyaznykh mnogoobrazii. I. Ratsionalnye invarianty”, Izv. AN SSSR. Ser. matem., 34 (1970), 501–514 | Zbl

[2] Novikov S. P., Doklad na Mezhdunarodnom kongresse matematikov, M., 1966

[3] Farrell F. T., Hsiang W. C., “A geometric interpretation of the Künneth formula for algebraic $K$-theory”, Bull. Amer. Math. Soc., 74:3 (1968), 548–553 | DOI | MR | Zbl

[4] Kasparov G. G., “O gomotopicheskoi invariantnosti ratsionalnykh chisel Pontryagina”, Dokl. AN SSSR, 190:5 (1970), 1022–1025 | MR | Zbl

[5] Wall C. T. C., Surgery of compact manifolds, preprint, 1968 | MR

[6] Bass H., “$K$-theory and stable algebra”, Publ. Math. Paris, 1964, no. 22, 5–60 | MR | Zbl

[7] Shaneson I. L., “Wall's surgery obstruction groups for $G\times Z$ for suitable group $G$”, Bull. Amer. Math. Soc., 74:3 (1968), 467–471 | DOI | MR | Zbl