On multiplication in a complex $K$-functor
Izvestiya. Mathematics, Tome 5 (1971) no. 3, pp. 641-667
Cet article a éte moissonné depuis la source Math-Net.Ru
A model is calculated in this paper of the geometric bundle $\varkappa\in K_C^0(X)$ stably equivalent to the product $\xi\cdot\eta$ of two given bundles $\xi,\eta\in K^1(X)$, i.e. the mapping $X\stackrel\varkappa\to BU$. The result is obtained in an explicit form.
@article{IM2_1971_5_3_a7,
author = {O. V. Manturov},
title = {On multiplication in a~complex $K$-functor},
journal = {Izvestiya. Mathematics},
pages = {641--667},
year = {1971},
volume = {5},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a7/}
}
O. V. Manturov. On multiplication in a complex $K$-functor. Izvestiya. Mathematics, Tome 5 (1971) no. 3, pp. 641-667. http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a7/
[1] Atya M. F., Lektsii po $K$-teorii, Mir, M., 1967 | MR
[2] Khyuzmoller D., Rassloennye prostranstva, Mir, M., 1970
[3] Mosher R., Tangora M., Kogomologicheskie operatsii i ikh prilozheniya v teorii gomotopii, Mir, M., 1970 | MR | Zbl
[4] Shvarts Dzh., Differentsialnaya geometriya i topologiya, Mir, M., 1970 | Zbl
[5] Hodgkin L., “On the $K$-theory of Lie groups”, Topology, 6:1 (1967), 1–36 | DOI | MR | Zbl