Removal of singularities of smooth mappings
Izvestiya. Mathematics , Tome 5 (1971) no. 3, pp. 615-639.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a multilinear differential operator which satisfies the necessary conditions, we establish a method of constructing a smooth function $M\to\mathbf R^q$ which maps no points to the zero operator.
@article{IM2_1971_5_3_a6,
     author = {M. L. Gromov and Ya. M. Eliashberg},
     title = {Removal of singularities of smooth mappings},
     journal = {Izvestiya. Mathematics },
     pages = {615--639},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a6/}
}
TY  - JOUR
AU  - M. L. Gromov
AU  - Ya. M. Eliashberg
TI  - Removal of singularities of smooth mappings
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 615
EP  - 639
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a6/
LA  - en
ID  - IM2_1971_5_3_a6
ER  - 
%0 Journal Article
%A M. L. Gromov
%A Ya. M. Eliashberg
%T Removal of singularities of smooth mappings
%J Izvestiya. Mathematics 
%D 1971
%P 615-639
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a6/
%G en
%F IM2_1971_5_3_a6
M. L. Gromov; Ya. M. Eliashberg. Removal of singularities of smooth mappings. Izvestiya. Mathematics , Tome 5 (1971) no. 3, pp. 615-639. http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a6/

[1] Bordman Dzh. M., “Osobennosti differentsiruemykh otobrazhenii”, Osobennosti differentsiruemykh otobrazhenii, Mir, M., 1968, 102–152 | MR

[2] Gromov M. L., “Stabilnye otobrazheniya sloenii v mnogoobraziya”, Izv. AN SSSR. Ser. matem., 33 (1969), 707–734 | MR | Zbl

[3] Gromov M. L., “Izometricheskie vlozheniya i pogruzheniya”, Dokl. AN SSSR, 192:6 (1971), 1206–1209 | MR

[4] Gromov M. L., Rokhlin V. A., “Vlozheniya i pogruzheniya v rimanovoi geometrii”, Uspekhi matem. nauk, XXV:5 (1970), 3–62 | MR

[5] Gromov M. L., Eliashberg Ya. M., “Postroenie neosobykh izoperimetricheskikh plenok”, Tr. Matem. in-ta im. V. A. Steklova AN SSSR, CXVI, 1971, 103–120

[6] Malgranzh B., Idealy differentsiruemykh funktsii, Mir, M., 1968

[7] Mezer Dzh., “Strukturnaya ustoichivost otobrazhenii”, Osobennosti differentsiruemykh otobrazhenii, Mir, M., 1968, 216–267 | MR

[8] Tom R., Levin G., “Osobennosti differentsiruemykh otobrazhenii”, Osobennosti differentsiruemykh otobrazhenii, Mir, M., 1968, 9–102 | MR

[9] Eliashberg Ya. M., “Ob osobennostyakh tipa skladki”, Izv. AN SSSR. Ser. matem., 34:5 (1970), 1110–1126 | MR | Zbl

[10] Feit S. D., “$k$-mersions of manifolds”, Act. Math., 122:3,4 (1969), 173–195 | DOI | MR | Zbl

[11] Hirsch M., “Immersions of manifolds”, Tranc. Am. Math. Soc., 93 (1959), 242–276 | DOI | MR | Zbl

[12] Hirsch M., “On embedding differentiable manifolds in Euclidean space”, Ann. Math., 73 (1961), 566–571 | DOI | MR | Zbl

[13] Phillips A., “Submersions of open manifolds”, Topologie, 6:2 (1967), 170–206 | MR

[14] Phillips A., “Foliation on open manifolds. II”, Comm. Math. Helv., 44 (1969), 367–370 | DOI | MR | Zbl

[15] Poenaru V., “On regular homotopy in codimension 1”, Ann. Math., 83:2 (1966), 257–265 | DOI | MR | Zbl

[16] Smale S., “The classification of immersions of spheres in Euclidean space”, Ann. Math., 73 (1961), 566–571 | DOI