Classification of extremally irreducible and normally irreducible representations of semisimple complex connected Lie groups
Izvestiya. Mathematics , Tome 5 (1971) no. 3, pp. 589-613.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new concept of “extremal irreducibility” for representations of Lie groups in separable locally convex spaces is introduced. All extremally irreducible representations of semisimple complex Lie groups are classified to within equivalence, i.e. to within topological isomorphism rearranging representation operators. Analogous results are obtained for other variants of axiomatics (normal irreducibility, Gel'fand irreducibility, complete irreducibility).
@article{IM2_1971_5_3_a5,
     author = {D. P. Zhelobenko},
     title = {Classification of extremally irreducible and normally irreducible representations of semisimple complex connected {Lie} groups},
     journal = {Izvestiya. Mathematics },
     pages = {589--613},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a5/}
}
TY  - JOUR
AU  - D. P. Zhelobenko
TI  - Classification of extremally irreducible and normally irreducible representations of semisimple complex connected Lie groups
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 589
EP  - 613
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a5/
LA  - en
ID  - IM2_1971_5_3_a5
ER  - 
%0 Journal Article
%A D. P. Zhelobenko
%T Classification of extremally irreducible and normally irreducible representations of semisimple complex connected Lie groups
%J Izvestiya. Mathematics 
%D 1971
%P 589-613
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a5/
%G en
%F IM2_1971_5_3_a5
D. P. Zhelobenko. Classification of extremally irreducible and normally irreducible representations of semisimple complex connected Lie groups. Izvestiya. Mathematics , Tome 5 (1971) no. 3, pp. 589-613. http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a5/

[1] Berezin F. A., “Operatory Laplasa na poluprostykh gruppakh Li”, Tr. Mosk. matem. ob-va, 6 (1957), 371–463 | MR | Zbl

[2] Burbaki N., Topologicheskie vektornye prostranstva, IL, M., 1959

[3] Gelfand I. M., Vilenkin N. Ya., Graev M. I., Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, Obobschennye funktsii, 5, Fizmatgiz, M., 1962 | MR

[4] Godement R ., “A theory of spherical functions. I”, Trans. Amer. Math. Soc., 73:3 (1952), 496–556 ; Godman R., Matematika, 5:5 (1961), 55–87 | DOI | MR | Zbl

[5] Zhelobenko D. P., “Simmetriya v klasse elementarnykh predstavlenii poluprostoi kompleksnoi gruppy Li”, Funktsionalnyi analiz i ego prilozheniya, 1:2 (1967), 15–38 | MR

[6] Zhelobenko D. P., “Analiz neprivodimosti v klasse elementarnykh predstavlenii poluprostoi kompleksnoi svyaznoi gruppy Li”, Izv. AN SSSR. Ser. matem., 32 (1968), 108–133

[7] Zhelobenko D. P., “Operatsionnoe ischislenie na poluprostoi kompleksnoi gruppe Li”, Izv. AN SSSR. Ser. matem., 33 (1969), 931–973

[8] Zhelobenko D. P., “Garmonicheskii analiz funktsii na poluprostoi kompleksnoi gruppe Li. II”, Izv. AN SSSR. Ser. matem., 33 (1969), 1255–1295 | Zbl

[9] Zhelobenko D. P., Naimark M. A., “Opisanie vpolne neprivodimykh predstavlenii poluprostoi kompleksnoi gruppy Li”, Izv. AN SSSR. Ser. matem., 34 (1970), 57–85

[10] Zhelobenko D. P., “Analog teorii Kartana–Veilya dlya beskonechnomernykh predstavlenii poluprostoi kompleksnoi gruppy Li”, Dokl. AN SSSR, 175:1 (1967), 24–27

[11] Zhelobenko D. P., “K teorii lineinykh predstavlenii kompleksnykh i veschestvennykh grupp Li”, Tr. Mosk. matem. ob-va, 12 (1963), 53–98

[12] Zhelobenko D. P., “O beskonechno differentsiruemykh vektorakh v teorii predstavlenii”, Vestn. Mosk. un-ta, 1965, no. 1, 3–10

[13] Zhelobenko D. P., “O predstavleniyakh klassa 0 poluprostoi kompleksnoi gruppy Li”, Funktsionalnyi analiz i ego prilozheniya, 4:2 (1970), 85–86 | MR | Zbl

[14] Kaplansky I., “Groups with representations of bounded degree”, Canadian J. Math., 1 (1949), 105–112 | MR | Zbl

[15] Kostant B., “The existence and irreducibility of certain series of representations”, Bull. Amer. Math. Soc., 76 (1969), 68–93 | MR

[16] Mackey G. W., “Infinite dimensional group representations”, Colloqium lecture given at Stillwater (Oklachoma, August, 1961); Matematika, 6:5 (1962), 57–103 | MR

[17] Robertson A., Robertson V., Topologicheskie vektornye prostranstva, Mir, M., 1967 | MR | Zbl

[18] Teoriya algebr Li. Topologiya grupp Li, Seminar “Sofus Li”, IL, M., 1962

[19] Harish-Chandra, “Representations of semi-simple Lie groups on a Banach space. I”, Trans. Amer. Math. Soc., 75 (1953), 185–243 ; “II”, 76 (1954), 26–65 | DOI | MR | Zbl | DOI | MR | Zbl

[20] Helgason S., “Application of the Radon transform to representations of semi-simple Lie groups”, Proc. Nat. Acad. Sci. USA, 60 (1969), 3–6