A~Torelli theorem for algebraic surfaces of type~$K3$
Izvestiya. Mathematics , Tome 5 (1971) no. 3, pp. 547-588

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper it is proved that an algebraic surface of type $K3$ is uniquely determined by prescribing the integrals of its holomorphic differential forms with respect to a basis of cycles of the two-dimensional homology group, if the homology class of a hyperplane section is distinguished.
@article{IM2_1971_5_3_a4,
     author = {I. I. Pyatetskii-Shapiro and I. R. Shafarevich},
     title = {A~Torelli theorem for algebraic surfaces of type~$K3$},
     journal = {Izvestiya. Mathematics },
     pages = {547--588},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a4/}
}
TY  - JOUR
AU  - I. I. Pyatetskii-Shapiro
AU  - I. R. Shafarevich
TI  - A~Torelli theorem for algebraic surfaces of type~$K3$
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 547
EP  - 588
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a4/
LA  - en
ID  - IM2_1971_5_3_a4
ER  - 
%0 Journal Article
%A I. I. Pyatetskii-Shapiro
%A I. R. Shafarevich
%T A~Torelli theorem for algebraic surfaces of type~$K3$
%J Izvestiya. Mathematics 
%D 1971
%P 547-588
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a4/
%G en
%F IM2_1971_5_3_a4
I. I. Pyatetskii-Shapiro; I. R. Shafarevich. A~Torelli theorem for algebraic surfaces of type~$K3$. Izvestiya. Mathematics , Tome 5 (1971) no. 3, pp. 547-588. http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a4/