A~Torelli theorem for algebraic surfaces of type~$K3$
Izvestiya. Mathematics , Tome 5 (1971) no. 3, pp. 547-588
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper it is proved that an algebraic surface of type $K3$ is uniquely determined by prescribing the integrals of its holomorphic differential forms with respect to a basis of cycles of the two-dimensional homology group, if the homology class of a hyperplane section is distinguished.
@article{IM2_1971_5_3_a4,
author = {I. I. Pyatetskii-Shapiro and I. R. Shafarevich},
title = {A~Torelli theorem for algebraic surfaces of type~$K3$},
journal = {Izvestiya. Mathematics },
pages = {547--588},
publisher = {mathdoc},
volume = {5},
number = {3},
year = {1971},
language = {en},
url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a4/}
}
I. I. Pyatetskii-Shapiro; I. R. Shafarevich. A~Torelli theorem for algebraic surfaces of type~$K3$. Izvestiya. Mathematics , Tome 5 (1971) no. 3, pp. 547-588. http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a4/