The geometry of the Fano surface of a~nonsingular cubic $F\subset P^4$ and Torelli theorems for Fano surfaces and cubics
Izvestiya. Mathematics , Tome 5 (1971) no. 3, pp. 517-546

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we prove a global Torelli theorem for the Fano surfaces of nonsingular cubics.
@article{IM2_1971_5_3_a3,
     author = {A. N. Tyurin},
     title = {The geometry of the {Fano} surface of a~nonsingular cubic $F\subset P^4$ and {Torelli} theorems for {Fano} surfaces and cubics},
     journal = {Izvestiya. Mathematics },
     pages = {517--546},
     publisher = {mathdoc},
     volume = {5},
     number = {3},
     year = {1971},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a3/}
}
TY  - JOUR
AU  - A. N. Tyurin
TI  - The geometry of the Fano surface of a~nonsingular cubic $F\subset P^4$ and Torelli theorems for Fano surfaces and cubics
JO  - Izvestiya. Mathematics 
PY  - 1971
SP  - 517
EP  - 546
VL  - 5
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a3/
LA  - en
ID  - IM2_1971_5_3_a3
ER  - 
%0 Journal Article
%A A. N. Tyurin
%T The geometry of the Fano surface of a~nonsingular cubic $F\subset P^4$ and Torelli theorems for Fano surfaces and cubics
%J Izvestiya. Mathematics 
%D 1971
%P 517-546
%V 5
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a3/
%G en
%F IM2_1971_5_3_a3
A. N. Tyurin. The geometry of the Fano surface of a~nonsingular cubic $F\subset P^4$ and Torelli theorems for Fano surfaces and cubics. Izvestiya. Mathematics , Tome 5 (1971) no. 3, pp. 517-546. http://geodesic.mathdoc.fr/item/IM2_1971_5_3_a3/